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ABSTRACT

Anorexia nervosa (AN) is a severe eating disorder, marked by persistent changes in
behaviour, cognition and neural activity that result in insufficient body weight. Recently,
there has been a growing interest in using computational approaches to understand
the cognitive mechanisms that underlie AN symptoms, such as persistent weight loss
behaviours, rigid rules around food and preoccupation with body size. Our aim was
to systematically review progress in this emerging field. Based on articles selected
using systematic and reproducible criteria, we identified five current themes in the
computational study of AN: 1) reinforcement learning; 2) value-based decision-making;
3) goal-directed and habitual control over behaviour; 4) cognitive flexibility; and 5) theory-
based accounts. In addition to describing and appraising the insights from each of these
areas, we highlight methodological considerations for the field and outline promising
future directions to establish the clinical relevance of (neuro)computational changes in
AN.
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INTRODUCTION

Anorexia nervosa (AN) is an eating disorder (ED) characterised by severe restriction of energy
intake relative to individual needs, persistent pursuit of weight loss efforts, and a preoccupation
with low body weight (World Health Organization, 2022). It is estimated that, globally, up to 2%
of women and up to 0.3% of men suffer from AN in their lifetime, with the mortality risk for AN
estimated to be five times higher than the general population (Eeden et al., 2021). In conjunction
with disordered eating, individuals with AN often experience psychological distress and a range
of physiological issues such as cardiovascular dysfunction, electrolyte imbalances or amenorrhea
(American Psychiatric Association, 2013). AN can be treated successfully, for example by using
psychological interventions (Monteleone et al.,, 2022); however, in many cases, a major goal of
treatment (particularly in hospital settings) is weight restoration (Lebow et al., 2017). Notably,
even after successful weight restoration, individuals with an AN diagnosis often continue to
make restrictive eating choices (Steinglass & Walsh, 2016), experience anxiety around food and
body image (Steinglass, Albano et al.,, 2012), score highly on generalised anxiety rating scales
(Kezelman et al., 2015) and have high rates of rehospitalisation or relapse (Khalsa et al., 2017).
Alongside and perhaps explaining the focus on weight restoration, another factor contributing to
the low success rates of available treatments is insufficient insight into the mechanisms that give
rise to and promote persistence of AN symptoms. For example, the persistent preference for low
fat foods seen in AN (Foerde et al. 2015; 2021) could stem from a variety of underlying cognitive
changes, such as a relative increase in habitual control over behaviour (Foerde et al., 2021; Onysk
& Seriés, 2022) or heightened self-control (King et al., 2016; Steinglass et al., 2012).

To make sense of behavioural changes seen in those with severely restricted food intake and
persistent weight loss efforts, there is a growing interest in research examining the neurocognitive
processes behind AN (Miles et al., 2020; Steinglass et al., 2019). This has revealed that AN is
associated with impairments in cognitive control and decision-making (Smith et al., 2018),
including reduced cognitive flexibility (Westwood et al., 2016; Wu et al., 2014) and poorer decision-
making performance in situations with probabilistic outcomes (Guillaume et al., 2015). Research
along these lines has provided a strong foundation for describing the kinds of cognitive changes
that occur in AN. Nonetheless, the use of overt behavioural measures and traditional summary
statistics can be limited when it comes to examining the latent mechanisms that give rise to these
changes, including differences in task performance and AN symptoms.

A novel framework to address this gap and advance understanding of cognitive mechanisms that
underpin maladaptive behaviour in AN comes from computational psychiatry. Computational
psychiatry applies methodological and analytical tools grounded in mathematical models to study
phenomena related to mental health disorders (Huys et al., 2016). By formalising hypotheses in
mathematical terms, computational psychiatry often aims to measure latent mental processes
in experimental settings, and test how such processes are related to neural activity, real-world
behaviour and clinical symptoms (Adams et al., 2016; Huys et al., 2021). Computational work on
psychiatric conditions such as depression (Huys et al., 2015), obsessive-compulsive disorder (Maia
& McClelland, 2012) and schizophrenia (Adams et al,, 2013) has demonstrated the promise of
this approach for informing more comprehensive accounts of mental health conditions, better
diagnostic criteria, and new treatments.

Recent years have seen a surge in interest in computational psychiatry approaches to the study
of AN: here, we systematically review studies that have investigated cognition in AN using a
computational framework. Our review aims to summarise central insights from this nascent
field. A total of 20 articles were identified for final review using systematic search and inclusion
criteria. The experimental methods, modelling paradigms, and results across studies were used
to ascertain current themes in this new and exciting line of AN research. The five main themes
identified in the field were: 1) reinforcement learning, 2) value-based decision-making, 3) model-
based and model-free contributions to behavioural control, 4) cognitive flexibility, and 5) theory-
based accounts.
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METHODS

The methodology for this review was informed by The Preferred Reporting Items for Systematic
reviews and Meta-Analyses (PRISMA) statement (Page et al., 2021) and previous systematic
reviews in the field of computational psychiatry (Pike & Robinson, 2022).

SEARCH STRATEGY AND ARTICLE SELECTION

To identify relevant articles, PubMed and Embase were queried between 6/10/2022 and
20/10/2022, and Web of Science and Google Scholar were queried on 11/01/2024. This combination
of databases was selected for high recall of relevant literature. Past research indicates that
combining results from MEDLINE, Embase, Web of Science and Google Scholar has the highest
overall recall in systematic reviews (Bramer et al., 2017). For the present review, PubMed was used
rather than MEDLINE because it provides access to both MEDLINE and other sources. The search
terms entered into these databases were ‘(‘anorexia’ OR ‘eating disorder’) AND (‘computational
psychiatry’ OR ‘computational model’)’. Due to the high number of articles that Google Scholar
returns for most searches, it is common to set an upper limit for how many results to screen
(Bramer et al., 2017; Pike & Robinson, 2022). We set this limit at 350 papers. To identify relevant
preprints, OSF Preprints was queried using keywords: ‘anorexia’ AND (‘computational psychiatry’ OR
‘computational model’). The selection process is summarised in Figure 1. Following identification,
articles and preprints were screened based on their title and abstract.

Articles were included if their title/abstract:

1. Mentioned anorexia nervosa or eating disorders.

2. Referred to a computational model of behaviour, or included one of the following terms
from computational neuroscience: prediction error, reinforcement learning, active inference,
learning rate, learning curve, Bayesian inference, temporal discounting, model-free learning,
model-based learning, exploration, or exploitation. Here and for subsequent selection
criteria, a computational model was defined as a mathematical representation of a cognitive
or neural process that included one or more latent variables.

After removing duplicates, papers were selected for full-text evaluation. During the evaluation
stage, we excluded review papers and meta-analyses. Published articles and preprints were
included in the systematic review if they met the following criteria:

1. Reported data from an AN group, or a group that shows symptoms characteristic of AN (e.g.
restrictive eating, body image preoccupation). Eligible groups could consist of people who
met a clinical threshold for AN, people who had recovered and/or were weight-restored, and
people with subclinical symptoms. The motivation for including experiments with subclinical
groups in the present review was that many behaviours associated with AN operate on a
continuum (Maguire et al., 2008). Therefore, understanding computational profiles across
severity levels provides insight into potential antecedents and risk factors for AN. We are
careful to state specific samples used when discussing studies throughout the review.

2. Reported data from human participants, rodents, non-human primates or simulated agents
as the experimental sample.

3. Reported behavioural data from an experimental task or simulated data.

4. Reported results based on a computational model of learning, decision-making or
behavioural control (e.g. a reinforcement learning model).

Theoretical papers (n = 2) that proposed a computational framework of behaviour in AN were
included even if they did not meet criteria 1-4. Thirteen papers met the above criteria and were
selected. Eight additional sources were identified based on references from the 13 selected papers.
The number of additional sources was relatively high because our initial search was not optimised
to find articles focused on delay discounting. Seven of the additional sources passed the screening
and evaluation criteria. References from these sources were further checked, but no additional
papers were identified. This resulted in a final set of 20 papers.
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Records identified through data
g P:xe:e?;c:?gl) Additional records
g Embase (n = 250) identified through
g Web of Science (n = 76) reference sections
2 Google Scholar (n = 350)* (=8)
OSF preprint (n = 5)
— Records excluded based on title/abstract
(n=905)
+ No mention of anorexia nervosa (AN) or
eating disorders
- Records d (n=1020) No toa putational model of
behaviour of participants with eating
g disorders or a key term from the field of
@ 1 computational psychiatry

Records screened (n = 115)

J Full text articles excluded with reasons **
() (n=27)
* Review papers/Meta-analyses
. + Lack of data from AN group, or a group that shows symptoms characteristic of AN
. l-ju!l‘text amc‘les,.assessed for + Lack of humans, rodents, h primates or simulated agents in experimental
5 eligibility after d sample
g (n=47) + Lack of reported behavioural data from an experimental task or simulated
behavioural data
+ Lack of reported results based on a computational model of learning, decision-
making or behavioural control
Articles included
§ (n=20)

DATA EXTRACTION AND SYNTHESIS

We developed a checklist to extract key characteristics from each paper. It included: the aim of the
research, hypotheses, study design, sample characteristics, task, computational framework (e.g.
reinforcement learning, delay discounting), behavioural results, computational modelling results
and the authors’ conclusions. In many cases, neuroimaging results were reported alongside
behavioural data. However, since models of neural activity fall outside of the scope of the present
review, we do not extensively cover these findings in the synthesis. Information from the checklist
was formulated into themes based on the behavioural process, experimental task and models used
to analyse results. A summary description of articles selected for systematic review is available in
Table 1. The review itself is organised around five major themes: reinforcement learning, value-
based decision-making, model-based/model-free control over behaviour, cognitive flexibility,
and theory-based accounts. While presented as separate sections for clarity, these themes are
concerned with interconnected cognitive processes. As such, some papers in the review appear in
multiple sections (see Table 1). In each section, we first provide a brief background and describe
important computational parameters, and later present the findings from studies included in the
systematic review.

REINFORCEMENT LEARNING
BACKGROUND

Altered processing of reward and punishment in AN is well documented. Questionnaire studies
have shown that individuals with AN tend to report higher punishment sensitivity, reward
sensitivity and harm avoidance (Jappe et al., 2011; Jonker et al., 2022; Fassino et al., 2002; Frank,
2021). Cognitive testing has shown that adults with AN tend to learn less from feedback overall,
an effect that persists after weight restoration and correlates with symptom severity (Foerde &
Steinglass, 2017). With recent developments in computational neuroscience, it is now possible to
further investigate reward and punishment processing in AN. The main computational approach
used to this end is reinforcement learning (RL). RL focuses on how agents use a trial-and-error
process to anticipate outcomes and take actions that maximise their reward (and minimise
their punishment) in a given context (Niv, 2009). Most RL models assume that learning happens
when a deviation from expectations occurs, generating a prediction error. This error signal is then
combined with a learning rate parameter, to update expected values of outcomes.
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Figure 1 PRISMA flow diagram
for papers included in this
study. *Due to the large
volume of results, the first 350
items, ordered by relevance,
were screened for Google
Scholar. **Theoretical papers
that proposed a computational
approach to AN but did not
meet the experimental sample
requirements were nevertheless
included.



(‘pauo))

‘bunyeas

A3@nou Jaybiy pup
juawysiund 03 AJInijIsuas
pa10dal-}19s Jamo) yyim

awwniboud Jusuwipai

(€9) €L (61 =U) DH
(0T =u) dg-Nv (1T =U)

Pa3IDID0SSD SDM BUIUID) "JH SA NV Ul buiuipa) S0} Bupipw-uoispap D WOJ4 Pa3INIIaI 4-NV :umopypaiq adAigns buiuipg) 2107
K10631p2 pasipdwy K10633p2 3o1dwi pasoduy buiwipa) A1obap)  ‘buiuipa) ¥opgpas {DLIRIID AI-WSQ IBW NV (7'9) 7'SZ (17 =U) NV JUSWISDI04UIDY “|D 19 Boys
§61<INgD O}
JH SA YM-NYV Ul buipubis 34 uonPJ0ISa4 1ybram Jayyo
Ul 92UaJ344Ip oU ‘7 Juiodawliy MM-NY 1z Julodawil|
1V "DH SA NV 812y U pjnsul .
-93ndY :T julodawl
'S9WI02IN0 3y ul sasuodsai 1abuoiis NVZOIDV T 3t v
JUBUIIDAI] 9SIOM 0] Pa1D}3J S3d dANSOd “JH KJIAIISUDS DRI G-NSA SIDAK 0Z-TT
Y}IM PaIDID0SSD SOM SA NV 91Ndy Ul 930pnpd juawysiund 19w syundidiiod 3npo “6'1) %91 (T2 =U) DH
91ppnnd 3y} Ul bunpubis 3y ul sasuodsai 1abuoiis %S0} “2Dgpas) ‘ouwwiniboid Juswipai sinak 0z-€1 buiuina) /107

3d 12ybiy ‘Nv u1

01 pa1D}aJ S3d aAIDBAN

piomal Kiplauopy wiouy buiwipa

D WO} paiinidal INY

(70 TST 1T =U) NV

Juswiadiojulay

“1D 39 UbWIZNHa([

"pPoow MO Y3im
Pa101D0SSD 3)A1s buiwipa)

D AQ PasL21IDIDYD NV “DH

SA N-224 Ul S|D1I} papJomal
pub paysiund usamiaq sa3pi

AuippadUN Japun
Buypw-uoisiap

3sD} buiwipa) “2Dgpasy

syuow g
< Joj swoydwAs payiodai
ou ‘DRI AI-INSA

SIDaA g7-G1
60 0CTH(e9=U)DH
SIDaA Q7-G1

buiuina)

120¢

punojioN  BujuiDa) Ul 92UBIBYIP JDIDBID  |DSIDARJ J13SI|IqDGOI wouj buiuina] 19w Asnoinaid (Ny-da4 “8°7) €72 :(%€ = U) NY-d24 JUBWLdIOMUIRY  “|D 19 [UopIDUIag
Ajuipu@dUN Japun SIDaA 47-71
bupipui-uoisap (977 €91 :(9€ =U) DH
"JH SA NV Ul Jusawysiund %sD3 buluIpa) “oDgpas) awiwiniboid Juswiipan b S0k €7-21 4(9°7) Buiuina) 8107
puUNO}ION 49D S3IDJ buIUIDD) PSDRIOU]  |DSIDARJ D13SI|IqDGOI woi} buiuipa ul paipdidiind (N 91noY 09T :(9€ = U) NV 2300y JUBWRdIoMUIRY |0 19 [UOpIDUIRg
(soo

>d 1V INVDI4INDIS)
STANLY3IH INVATTHY
ATTVIINITO H1IM
JONVIWYO4¥3d MSVL
YO SYILINWVIVd
13dOW 40
NOILV13¥d0d

SONIANI4 A3

§S300dd

WOIAvivd JAILINDOD

(S)dNOYD NV IHL ¥04
VIY3LIYD DILSONOVIA

a3140d3y 41 ‘I9NVY
39V ANV ‘(NOILVIAIQ
QYVANVLS) 39V NVIW
}(3ZIS 31dWVS) FIWVN
dNOYD SV NILLIYM
SdNOYD LNVAIDILYVd

(S)awaHl

Aanls

"2JIDUUONSaNY UOIIDUILIDXT sJdpJosig buinbg = P-3a7 Aiojuanu] A1aixuy aduninaddy = Ty 1s9] SapnInly bunbi = 9z-1y3 9)pas dnsoubpiq Japiosig bunpl = sqal
‘uonIp3 Yig/ylt ‘siaplosiq |01US|y JO |DNUDJA 1021ISIIDIS PUD D1ISOUbDIQ = G/AI-NSQ XSPUT SSDI Apog = IINg ‘10443 UoIDIPald = 3d H4SD] @d10y) joiodwiaaiu] = [ D] Hsb] sy anbojpuy uooyng = 13vd

4sp] BuIIqUIDD DMO] = | D] ‘DSOAISN DIXI0UY PRIBA0IDY = NY-I24 4apiosiq A13IXUY 1DID0S = QS 49pIosig aAISINdW0)-aAISSasqO = D0 “4ap4osig bunng = 3 ‘DSoAIsN DINg = Ng ‘DSOAISN
DIXaJouy PaI01say IYDBISA = YM-NY 013U AyljoaH = JH ‘odA1gns abind-abuig DsonIaN DIxalouy = dg-NV 2dA1gns BundLIsay DSOAIDN DIXSI0UY = ¥-NV ‘DSOAISN DIX2Jouy = NY :SUOIIDIADIGQY 910N
"S2IPNIS PaMBIASJ JO SDISHIIDIDYD By buisupIWINS 9)qp] T @19D)



("puoD)

‘(921042

2Jn1ny uo 1odwi 1abbiq anoy
$9550] 2Jaym JH 03 AIDJjuod
‘N Ul Jnoiapyag uo 3ondudi
JID]IWIS BADY SISSO) PUD
suipb) JH SA N ul Jo3awn.od

Buypu-uoisiap

swwinJiboid Juswiipan
D WOJ Pa1INIIaI

(€2) €27(917 =U) NV
1z Apnis

(€8) §%¢ (55 =U) DH
(6°6) €°£2:(09 = U) NV

Bupipw-uoisidap

610¢

punoy 10N UOISIDAD SSO| PaINpay 191 2135111g0qoId DLSIID AI-INSQ IBW INY :1 Apnis paspg-anipA “]0 19 UDIDYJIDA
"sa1dwps NY 93443 JO 10
OM} Ul DH SA NV Ul AJIA1JISUSS
$50] paspaInaq “bupw .

. 1P q bubk (000 “Ip 319 32NS)
g -UOISI29P 40} SAWIO0IINO

aJpuuonsanb sagl

YHM paipia4iod Ajpniyisod U234 3SOW U0 32UD3l "S9S 92443}

SDM |9powl buluiIDa)
9ouUs)|pA-32adsoid b wioly

1930316 bunpIpUl ‘SIDWINRSD
J919WnJnd Alowaw Jamoj Aq

{(96/€T = U) 9US BUO NV

DLAIID

SS0JOD P123)102 31aM DI
(£'9) §'ST (L9 =U) DH

Ja12Wpind Alowsw PasLa1IDIDYD “DH SA NV Ul Buppw-uoisap AI-WSQ 19W :(46/18 (8°0T) 6'9Z :(£9 = U) Ng Buppw-uoispap %102
/buiuina) ayy ‘N Ul 9oupPWI04Iad s} paspdwi] 191 211S11GPqoId = U) S91IS 0M] 1D NY (5'8) 9°SZ (%6 = U) NY paspg-anipA “ID 12 UDy)
*S9WI02IN0 JUBWIIDAA]
9SI0M Y1IM PaIDIDOSSD AAnisuas SIDAA 7E-GT
som Juawysiund ym JH SA NV Ul 32Dqpaay %S0} Juawysiund awiupiboid Jusuwipaly “(€%) 9TZH8€E = U) DH
s|ouy buunp s3d aAobau wlody buiuipa) paindul BuILID3] 9AIIDIDOSSD “opgpaay D WoJj pa1InIdal SIDak 09-9T Buluina) 120¢

40 9pnjubow 8y} ‘N Ul pup sa104 BUILIDI] JOMOT 213S1)1qDGoId wou) buiuina DLIDID G-INSQ IDW NV “9'6) 8°7¢ (v = U) NV UBWDI04UIDY “|D 19 DBUBIBIM
‘IING JUS4ind pUD
paJa1sibal 159M0] a3
uaam1aq abupyd oy pwis
puD ‘Uo1IDI0ISaI IYDblam
40 UOIDINP J9UOYS YIM  "SDH SA ¥M-NV Ul Buiys 105 syuow 71
Ppa1D]2.4400 Som paads Ul s3219Q “JH SA YM-NV Ul abubyd Bugiys < Joy swordwiAs payiodal X3}
Bujuipa) jpwiougo uonisinbop aynJ jpiIul buunp 3)NJ Y}Im ¥spy 195 %dDqpasdy ou ‘DLIRYD AI-NSA (1°6) £'£7:(SE=U)DH  2Aubod buiuipg) %102
210W D “YM-NV Ul paads BuluIDa] paspaIdU] Buiuina) A10ba10) wlody buiuina 19W Ajsnoinaid :yp-NV “9'9) £'67 (6T = U) YM-NV JUSWIDDIOHUIDY “|D 12 0210]14
(so'0
> d 1V INVDI4INDIS)
SIAUNLVI4 INVAITIY d3140d3Y 41 ‘I9NVY
ATTIVOINITI H1IM 39V ANV ‘(NOILVIAIA
JONVIWHO4¥3d MSVL QYVANVLS) 39V NVIW
40 SYILINWVHVd X(3ZIS 31dWVS) IWVN
T13AON 40 SS300dd (S)dNOYD NV FHL Y04 dNOYD SV NILLIIM
NOILVIIYI0D SONIANI4 A3 W9OIAvivd JAILINDOD VIY3L1Id)D DILSONODVIA SdNOYD LNVAIIILYVd (S)AW3HL AdNlLsS




("pauod)

"IH “SA
YM-NY Ul S2INsDaw uiplq 4o

Jo3u0d AJoiqiyul
‘burypul-uoisidap

syjuow 71
< Joj swoydwAs pajiodai
ou ‘DL AI-INSA

sinak /7
-LT(%'€) TTT(9€ =) DH
sinak /7-/1

Bupipw-uoisidap

PUNOjJON  [DINOIADYSQ Ul S3DUBI34IP ON 101 JpJ0dwiaiRIU W Asnonaid YM-NY - “(€°€) 272 H(9€ = U) dM-NY paspg-anipA 0707 10 19 bupy
"DH SA NV Ul bupjpu
-UOISI23P Y}IM PIIDIDOSSD
suoibal |p1aund Jousisod pup
JojUO4}21d DI9ID] Ul UOIIDAIFID
uInIq paspaJd9d JH 'SA NV sioak 7z
Ul paads uoisidap J21sb} ‘OH Jos1u0d Aloquyul awwiniboid JuswIpas} -21‘%'2) 19T (%€ =U) DH
SA NV Ul S930J buinunodsip ‘Buypw-uoisiap D Ul paipdidiiod sioak 7z Buybw-uoisap
punoj 10N AD)ap Ul 92UBIBYIP ON 101 psodwiapiaiu] ‘DLIRIID AI-WSQ IBW NV -21(S°0) L°ST (€ =U) NV paspg-anipA 9107 | 12 buny
OH SA4M-NV S'61<INgG (T€=U)DH
U1 $93pJ buzuNodsip Abjap Ul D 0} UOI3DJ0}SD JybBlam (€4 = U) ¥YM-NV
9OUBJRYIp Ou ‘7 Julodawin 3y 194D SJUBWIAINSDAW 1z Juiodawli|
MM-NY ‘2 utodawi)
“¥-Nv Aq usnup (9°2) L% :(6€ =U) DH
SDm T julodawly 30 SJUBIRYIP Josuod Aloygiyul swwnJiboid Juswipain (5°2)
3YL "DH 'SA NV 93ndY Ul S910J %SD1 ‘Buiybw-uoIsiap D Ul paindidiiod D3 0'5Z (65 = U) NV 232y Buyobw-uoisap 5102
punoy 30N Buipunodsip Aojep Jamo Buiunodsip Aojaq JoJodwiapiaiu] G-WSQ IdW INY 91NdY :T uiodawil] pasbg-anipA B REPENRET]
$2J02S JUIDAISAI (7661 (9'9)
‘unbeg 3 uINquIb4) O-3a3 #'€7(STE = u) Z Apnmis
‘Ing :bupa paiapiosip (9°01)
MO PUD UBIYDH 7€ :(0LT =) T APMIS + 0
SUIUOW 7T < oy ApN3s :$31pN3s J02IUN2-UON
AM-NVY Ul swoydwiAs payiodai ou (L) Szei(se=U)
U35 2JOM ‘UOISI9AD SSO] J0U . Buios pasaplosip ybiy JH
; DLISIID G-NSa Buneaw S
INq ‘UOISIDAD Ysl Ul sabupbyd 156U} OU SD UDIPIUI D (€€)6zrH(8e=U)
|puoipINdwod buipuodsaiio) £q pasOUBOIP YM-NY Buipa paiapiosip moj JH
"azis Apoq buispaioap (§72) 19T (€7 = U) IM-NV
/Bbuispaioul 03 painiaJ SANJOA UOISIDND Y1 awwniboid Juswipaly (L°8)
Aq paip|Npow spm YM-NY uoiipuod 9zis  ‘AuIplEdUN Japun D ul pa3pdidind DU 647 (1€ = U) NV 212y Bupw-uoisidap £20¢
punoy 10N puD NY 91n2y Ul buppl sty -Apog b yIM 1¥vd Bubw-uoisidag G-WSQ IdW INY 91NdY :Apnis 1p21UID pasbg-anipA “|b 39 UOSUIUS[
(soo
> d 1V INVDI4INOIS)
SFANLYIH INVAITHY Q3L1Y¥0d3Y dI ‘I9NVY
ATTVIINITI HLIM 39V ANV ‘(NOILVIA3Q
JINVINIO04Y3d MSVL QYVANVLS) 39V NVIW
YO SYILIWVIVd ((3Z1IS 31dWVS) IWVN
13dO0N 40 S$S300dd (S)dNOYD NV IHL o4 dNOYD SV NILLIIM
NOILV13¥d0d SONIANId AN WOIavivd JAILINDOD  VIYILIY¥D JILSONODVIA SdNOYD LNVdIDILYVd (S)aW3IHL Adnis




("puoD)

'salipuuonsanb
uonpdnidoaid abowll
Apoq pup bunpa
PJ9pJOSIp UO 52103
pauodal-}as yym

uonpdnodoald

(%10 “Ip

19 9]D3A) VY PUD (7861
"D 12 JaUID9) 9Z-1v3
a3 uo uonpdnadoaid
abpwil Apog pup

P21D}31400 UOI}PUOD  “UOIHPUOD 22UDGIN3SIp abpwil UoI}Ipuod abowi Apoq Buipa palapliosip uo
2oUDpgJn3sIp abpwll Apogq ay3 ul 109449 4930216 22UDgInIsIp ‘bupipwl-uoisap %1 2 paJods qyblam siak g¢
Apoq pup |DJINBU Y3 Ul D YIM ‘OH SA @3 ul Buiuipa) abowll Apog pun ‘BuluIDa) 950] 03 3dwa1ID UD -8T (9'%) %'97 (7€ = U) DH |oJ3u0d
Buiulba) paspg-jepow 0} SUOIINGLIIUOD 3344-]9POU AJDI2UOW YHM ¥SD} JnoIAbyaq U1 131P DAIID1ISAI UO sioak g¢ 994)-]9pOoW pup 2202
U99M19Q DURIBYIP BYL  PUD Pasng-]opowl pasnaidaQ uolisiap dajs-om| Pa122.1p-]p09 Buiaq payiodal :q3 -8T (%) 9°0¢€ (5 = u) a3 paspg-1apop ‘SQ1IaS ¥ YSAUD
"SUOIIPUOD uoIIpuod Buppw
PO0} puD AIDIBUOW Ul JH SA J112ads-pooy pup  -UoISPIP ‘BUILIDI) awwniboid Juswipaly |oJ3u0d
NV Ul buiuipa) 03 uorngLuod AJDI2UOW YHM 3SD} “InoIAbyaq D WOJ4 PINJIAI ‘DIBID (0°S) 967 :(£G = U) DH 92.4-]9pOoW pup 120¢
punoy 10N pasDg-]apowl paspaida( uolisiap dais-om| Pa12241p-1005) S-S Y3 1BW NV (0°2) T'L7 (1% =U) NY Ppasbg-19poiy “|0 39 9pJa04
‘avs pup dd0 (s9b03s JuIa4IP) (0%) 0°0€ (7% = U) AVS
'sdnoib 1o ul buiUNOISIP  SA JH Ul 9dUBJa4)Ip JUDdIUDIS Josuod Aloygiyul swwipJiboid Juswipain (8°5) 7’67 :(0G = U) ADO
|DJodwia) paspaIdap yim ON "DH SA NV Ul buizunodsip ‘Buiybw-uoisiap D Ul paipdidiiod (S°2) L°2T (LT =U) NY Buybw-uoisap /102

Pa1DID0SSD SOM A3BIXUY

|pJodwiay paspnainaQ

121 ISP} uonoA L

|piodwiapaul

DU AI-INSQ IBW NV

(9°2) 06T (5L =U) DH

paspg-anipA

“|b 39 Ssp|bUIRIS

OH
SA NV @1n2y Ul buinunodsip

lo3u03 Aionqiyul
‘Buripul-uoisidap

swiupniboid Juswiipaly
D Ul paipdidiind ‘pusild

(£9)6'ST (8T =U) DH
(#'9)

Buybw-uoisap

¢10¢

punoj JoN |piodwia) paspaida(g ¥SD} UoDII | |psodwiapiaiu] AIFWSQ 19W NV 91ndY 847 :(9€ = U) NV 2Indy Ppaspg-anipA “10 13 sspjbuials
syjuow 9
< 10} swoydwAs papiodai
Ou ‘DU AI-INSA
19w Ajsnoinaid (Ny-d34
JH SA NV Josuod Aloygiyul awwpiboid Juswnpan (%) 88T (S = U) DH
ul (¥) J93dwpind buiunodsip ‘burypul-uoisiap D W04} pa3InJdal (1°€) £'1Z (€€ = U) Ny-22l Bupw-uoisidap G107
punoj 10N AD]ap Ul 92UBJ344Ip ON 101 |psodwiapiaiu] DLIBIUD AI-WSQ IBW INY (£77) €S (%€ = U) NV pasbg-anipA “10 13 1942S1Y
(so'0
> d 1V INVDI4INDIS)
SIUNLVI4 INVAITIY d3140d3Y 41 ‘I9NVY
ATTIVIINITI H1IM 39V ANV ‘(NOILVIAIQ
JONVIWHO4¥3d MSVL QYVANVLS) 39V NVIW
40 SYILINWVHVd 2(3Z1IS 31dWVS) IWVN
T13AON 40 SS300dd (S)dNOYD NV IHL ¥04 dNOYD SV NILLIIM
NOILVIIYI0D SONIANI4 AT W9OIAvivd JAILINDOD VIY3L1IY¥)D DILSONODVIA SdNOYD LNVAIIILYVd (S)AW3HL AdNniLs




NV 40
SUOI}DIS}IUDW 1DINOIADYSQ
Joj uonpupidxa pasodoid

Bupw

-UoIs12ap pasbq
-9NJDA {SJUN0IID

120 ‘NPURIDW

D sb juiod 2dualaa4 YBIH UoI1DNIDAS 32104 pasobg-Aloay ] S 11061y
‘suonpINWIS Buyow
]opow Ul 9%Diul SLI0JDD JSMO] -UoIs12ap pasnq
UM PIDID0SSD AJINAILISUDS suonoNulis -9N|DA {S3UN0O22D 0202
PJOM3J 3]qDIIDAUL PUD MOT SD3 HpuDg Juawysiung pasobg-Aloay ] “|b 39 JasnaN

"DH SA Ny-231 Ut Ayjipjon
03 @suodsau Ul syusawiisn(po
punoy 10N 9104 buIUIDD] PIDAS)T

Buiiys 39s
¥sp3 Ayapjonayl  ‘buiuina] anndopy

"(¢861 "0 39 J3UIDD)
97 -1viayruo Qg <
PaJ02s ;3 |P2IUldgns

{3 104 PURD G-NSA
J99W J0U PIp ‘syjuowl
21 < Joj suoydwiAs
paiodai ou ‘puoissajoid
2J02Y}|Day D WO}
sisoubpip Ny J2udioy
paviodal-1as (Ny-22)

(7'9) 0's¢ (¢ =U) OH

(80

8°€C (G = u) 43 1p21u1Pgns
(8°€) S'€C (ST = U) Ny-22u

Buiuioa)
JUBWIDDIOJUIRI

€20T “Ip 319 Mld

(so0
> d 1V LNVDI4INODIS)
S3UNLYI4 INVATIIY
ATTVIINITI H1IM
IDONVYWYO4H3Id NSVL
YO0 SYILIWVHVd
713A0OW 40
NOILY134Y40D SONIANIL AIN

§$$300dd
WOIAVYvd JAILINDOD

(S)dNOYD NV IHL 404
VIY3LIYD DILSONOVIA

Q@3140d3Y 41 ‘I9NVY
39V ANV ‘(NOILVIA3A
QYVANVLS) 39V NVIW

(3Z1S 31dWVS) IWVN

dNOYD SV NALLIIM
SdNOYS LINVAIJILYVd

(S)AW3IHL

Aanlts




SYSTEMATIC REVIEW STUDIES

Given the evidence of altered feedback processing in AN (e.g. Bischoff-Grethe et al., 2013; Foerde
& Steinglass, 2017; Frank, 2013), a number of recent computational studies have sought to
examine how learning changes in response to reward and punishment feedback by analysing RL
parameters, with a focus on learning rates and prediction errors. We will now examine the findings
from these studies.

EVIDENCE FOR INCREASED LEARNING FROM PUNISHMENT IN AN

Three studies in the review suggest increased learning from negative feedback in AN (Bernardoni
etal, 2018, 2021; Filoteo et al., 2014). Bernardoni et al. (2018) observed a significant, but modest,
elevation in learning rates following negative outcomes (i.e. punishment) in adolescents with
acute AN compared to healthy controls (HCs). This elevation occurred after punishment but not
reward, hinting at a learning bias specific to negative feedback. In their sample of adults who had
recovered from AN, punishment learning rates themselves were not significantly different from
HCs. However, the difference in learning rate between punishment and rewards was larger for
the recovered AN group, suggesting that people recovered from AN continue to show a stronger
relative response to punishment (Bernardoni et al., 2021). Further evidence that women who
recover from AN might continue to show preferential processing of negative reinforcers was seen
in a study reporting faster learning during the initial rule acquisition stage in a category learning
paradigm (Filoteo et al., 2014). Model simulations showed that increasing a negative feedback
sensitivity parameter was able to capture this behaviour in weight-restored AN. Hypersensitivity
to punishment was associated with shorter maintenance of weight restoration and a smaller
change in body mass index (BMI) between the lowest registered BMI and current BMI, implying
that punishment sensitivity might be associated with recovery status (Filoteo et al., 2014).

EVIDENCE FOR INCREASED PREDICTION ERROR SIGNALS IN AN

Rather than examining reward or punishment per se, DeGuzman et al. (2017) focused on prediction
errors, the difference between the reward expected and the reward obtained. Neuroimaging
results showed stronger responses to prediction errors in the caudate and insula, during acute AN,
compared with HCs. For context, independent studies have implicated the caudate in goal-directed
action selection (Grahn et al,, 2008), and the insula in error awareness (Klein et al., 2013) and
decision-making (Uddin et al., 2017). Unexpected omissions in reward, which produce negative
prediction errors, were associated with stronger responses in the caudate. Unexpected rewards,
which produce positive prediction errors, were associated with stronger responses in the insula.
Heightened prediction error responses normalised following weight restoration. However, stronger
prediction error signalling in the caudate during the acute phase of AN was associated with worse
treatment outcomes. Putting these results in context, one possibility is that individuals with AN
are more responsive to negative feedback (Bernardoni et al., 2018, 2021; Filoteo et al., 2014), but
especially when it violates expectations (DeGuzman et al., 2017).

EVIDENCE FOR DECREASED LEARNING IN AN

In contrast to the studies reviewed so far, there is also evidence for decreased learning in AN
compared to HCs (Shott et al., 2012; Wierenga et al., 2021). RL modelling analyses of behaviour
during an associative learning task showed decreased learning rates for both positive and negative
prediction errors in AN (Wierenga et al., 2021). Prediction error magnitudes did not differ between
samples; however, negative prediction error magnitudes in AN were associated with worse
treatment outcomes.

NO EVIDENCE FOR A DIFFERENCE IN LEARNING IN AN

In addition to positive results reported above, we note that some computational studies have
compared learning rates between AN and HC groups, but did not find significant differences
(Foerde et al., 2021; Verharen et al., 2019).
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EXPLORATION

A key parameter controlling how much people explore different options and exploit high value
options in standard RL models is called the inverse temperature (), which measures the extent to
which choices are based on differences between learned values (Daw et al., 2006). The majority of
the studies in this review did not find significant differences in values of the inverse temperature
parameter between AN and HCs, which could suggest similar levels of off-policy or exploratory
behaviour. One exception was Wierenga et al. (2021), who reported lower inverse temperatures
in AN compared to HCs during a learning task, even after participants had learned associations
between different stimuli and their outcomes. This could reflect increased exploration in the
sample, but could also reflect greater noise in the decision process or difficulties focusing on the
task (Eshel & Roiser, 2010).

VALUE-BASED DECISION-MAKING

BACKGROUND

AN symptoms, such as restrictive food choices and resistance to treatment despite dangerously
low weight, can be viewed as decision-making impairments (Giannunzio et al., 2018). This has
led to a vast body of research exploring whether altered decision-making in AN is specific to food
and body weight, or whether changes extend beyond these contexts. In laboratory settings,
decision-making is often assessed using choice tasks involving monetary rewards, such as the
Iowa Gambling Task (IGT) or Balloon Analogue Risk Task (BART). Classical studies indicate reduced
decision-making performance and lower risk thresholds in AN (e.g. Adoue et al., 2015; Bodell et
al., 2014; see Howard et al., 2020 for review). Altered evaluation of future rewards has also been
studied in AN, as a potential mechanism that underpins forgoing immediate food rewards in
pursuit of longer-term weight-loss goals (e.g. Decker et al., 2015; King et al., 2016).

SYSTEMATIC REVIEW STUDIES

To date, computational studies on decision-making in AN have focused on probabilistic decisions,
risk aversion and temporal discounting. We will now review the findings from each of these areas.

PROBABILISTIC DECISIONS AND RISK AVERSION

Two computational studies have examined AN choices in probabilistic settings using the IGT (Chan
et al., 2014; Verharen et al., 2019). Both found that individuals with AN had reduced performance
compared to HCs, but reached different conclusions about the underlying mechanism.
Computational modelling by Verharen and colleagues (2019) indicated that individuals with AN
were less loss-averse than HCs. As a result, AN participants experienced negative outcomes more
often and earned less reward on the task. In contrast, computational modelling by Chan and
colleagues (2014) found that the best explanation for lower IGT performance was a decrease in the
extent to which participants based their decisions on past trials, indicating potential impairments
in learning and memory rather than unusual reward preferences. The precise mechanisms of
impaired probabilistic choice in AN therefore remain open.

The main insight from computational research on risk tolerance has been that individuals with
AN are less willing to take risks to earn rewards in general (Jenkinson et al., 2023). However, this
willingness can change depending on the specific decision context. When rewards were tied to
making an onscreen character slimmer, participants with acute and weight-restored AN became
more willing to proceed with the trial despite an increased risk of losing money. The direction of
this effect reversed when rewards were linked to increasing body size. Computational modelling
confirmed corresponding changes in risk aversion, not loss aversion, for participants with weight-
restored AN. Based on these results, the authors propose that general risk aversion may be a state-
independent factor predisposing people to AN, while the value placed on changing body size may
modulate risk aversion during specific decisions (Jenkinson et al., 2023).
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DELAY DISCOUNTING

Delay discounting (also called temporal discounting) aims to measure how well one can delay the
receipt of reward. The discounting process is often modelled with a hyperbolic function (see Green
& Myerson, 2004 for review), in which the main computational parameter is the discount rate, k.
This parameter captures the reduction in subjective value that an option incurs with increasing
delays to receive its corresponding reward. Higher k indicates a greater preference for lower
but immediate rewards versus higher but delayed rewards. Several studies have investigated
temporal discounting in AN, but findings have been mixed. Some studies report that individuals
diagnosed with the restricting subtype (AN-R) show reduced temporal discounting of delayed
monetary rewards compared to HCs (Decker et al., 2015; Steinglass et al., 2012, 2017), a finding
that has not been observed in individuals with the binge-purge subtype (AN-BP) (Steinglass et al.,
2012), obsessive-compulsive disorder (OCD) or social anxiety disorder (Steinglass et al., 2017).
Temporal discount rates normalised after weight restoration (Decker et al., 2015), suggesting
that altered discounting is an illness-specific state, rather than a trait. In contrast, other studies
report no difference in temporal discount rates between acute, partially restored and recovered
adolescent AN and HCs (King et al., 2016, 2020; Ritschel et al., 2015). One plausible reason for
the inconsistency could be the age of participants tested. Two studies reporting no difference in
temporal discounting rates (King et al., 2016; Ritschel et al., 2015) tested participants around 10
years younger than studies reporting reduced discounting in AN (Decker et al., 2015; Steinglass et
al,, 2012; Steinglass et al., 2017). These results suggest that reduced temporal discounting may be
a characteristic of adults with acute AN-R, but not adolescents with AN.

MODEL-BASED AND MODEL-FREE CONTROL OVER BEHAVIOUR

BACKGROUND

A well-established theory of AN proposes that disordered eating emerges as a goal-directed
behaviour, where an individual purposefully restricts food intake and finds the outcomes rewarding.
Over time, these behaviours shift from goal-directed to habitual control. Once habitual, behaviours
that restrict food and reduce body weight continue to occur irrespective of their outcomes,
resulting in the rigid, persistent, and compulsive symptoms of AN despite adverse consequences
(Steinglass & Walsh, 2006; Uniacke et al., 2018; Walsh, 2013). In the computational literature,
goal-directed and habitual behaviour have been operationalised as model-based and model-free
learning. Model-based processes depend on mental maps of contingencies in the environment
that can be used to simulate possible outcomes without experiencing them in real life. In contrast,
model-free processes depend on trial-and-error learning and decisions are based on associations
between the stimuli and learned responses. The contribution of these two systems to behaviour
is often assessed using a two-step decision task and modelled with a ‘hybrid model’, in which
choices are predicted using a weighted combination of model-based and model-free processes
(Daw et al., 2011).

SYSTEMATIC REVIEW STUDIES

To date, two studies have used computational approaches to examine model-based and model-
free learning in AN (Foerde et al., 2021; Onysk & Series, 2022). Foerde et al. (2021) found decreased
model-based learning in AN, in both food-specific and monetary tasks, suggesting a domain-
general shift in the balance between goal-directed and habitual control over behaviour. This
effect persisted even after weight restoration, ruling out the potential influence of starvation. This
reduction in model-based learning was replicated in a subclinical ED group tested online (Onysk
& Series, 2022). They found that the effect was most pronounced in experimental blocks where
monetary reward was paired with an icon that participants had selected as being similar to their
own body shape. Model-based learning in these blocks, relative to neutral blocks, was able to
successfully predict scores on a self-reported disordered eating and body image scale, but not
OCD-like behaviour.
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In contrast to reduced model-based learning observed in both studies, Foerde at al. (2021) found
that model-free learning remained intact in acute AN. This finding differed from the subclinical
ED sample in Onysk & Seriés (2022), who also showed reduced model-free learning. One possible
explanation for the difference could be the samples used in the two studies. Foerde et al. (2021)
were unambiguously testing individuals with acute AN, whereas Onysk & Seriés (2022) were
testing individuals with high levels of concern about eating, independent of a formal diagnosis.
The latter sample could include a range of ED categories, such as subclinical forms of AN, bulimia
nervosa or binge eating disorder. It is therefore possible that the precise balance of goal-directed
and habitual control is distinct in acute AN compared to other ED populations.

COGNITIVE FLEXIBILITY

BACKGROUND

Rigid and often ritualistic eating behaviours, perfectionism, and the strong preference for familiarity
over new experiences commonly observed in AN patients have been linked to impairments in
cognitive flexibility (Holliday et al., 2005). Cognitive flexibility refers to the ability to adjust behaviour
to changing contingencies in the environment, and it is often studied using paradigms that require
relinquishing previously learned rules and adapting behaviour to new contexts (Dajani & Uddin,
2015). Individuals with AN often exhibit reduced performance in this domain, using the same
choice strategy for significantly longer after a contingency change than HCs (Steinglass et al.,
2006; Wu et al., 2014).

SYSTEMATIC REVIEW STUDIES

To better understand impairments in cognitive flexibility, Filoteo et al. (2014) used a computational
model that assumed set-shifting depends on a competition between an explicit hypothesis testing
system and an implicit learning system, implemented in a hybrid neural network where learning
was controlled by RL rules. The setup had three parameters with potential relevance to set-shifting:
1) a parameter that captured decisions to follow unusual rules, which the participant had rarely
used before, 2) a parameter that captured the tendency to continue using one rule regardless of
feedback (perseveration), 3) a parameter that captured sensitivity to negative feedback. Increasing
the perseveration parameter and decreasing the unusual rule selection parameter successfully
accounted for set-shifting difficulties in weight-restored AN.

In contrast to research indicating reduced cognitive flexibility in AN, Pike et al. (2023) found
evidence for greater cognitive adjustment in response to changing task demands. Here cognitive
flexibility was examined from a different angle, focusing on how learning is calibrated to
environments with volatile or stable contingencies. Since rewards in volatile environments can be
better predicted from more recent feedback, learning rates were expected to increase in volatile
environments compared to stable ones. Hence, the main idea was that the change in learning rate
between volatile and stable task environments could be used as a measure of cognitive flexibility.
Women recovered from AN showed greater adjustment of learning rates between volatile and
stable blocks compared to HCs - opposite to the authors’ hypotheses, and, if anything, indicative
of greater rather than reduced cognitive flexibility. Learning rate adjustments were comparable
between a subclinical ED group and HCs, and conventional stay/switch analyses of overt behaviour
did not reveal any group differences in flexible processing.

THEORY-BASED ACCOUNTS

In addition to the empirical results above, two computational theories of cognitive change in
AN have been developed. The Reference Dependent Model of AN (RDMA) proposes that altered
evaluation processes underlie the symptoms of AN (Rigoli & Martinelli, 2021). The model is
grounded in the idea that people develop internal, subjective values for different situations, based
on the outcomes they experience. Within RDMA, the process of transforming outcomes into
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subjective values rests on a reference point parameter (u,). The reference point is an expectation
about how good a specific environment, k, should be. This influences the subjective values of
outcomes compared to this reference point. Outcomes better than the reference are experienced
as rewarding, while outcomes worse than the reference are experienced as punishing. The RDMA
uses this framework to propose two main changes in AN. The first is a high reference point across
a range of situations (i.e. a general increase in p, relative to HCs). Only outcomes that exceed
this unrealistically high reference point are experienced as positive, leading to perfectionism. The
second proposed change is an increased sense of control over body shape in AN, due to large
differences in subjective value between actions that reduce body weight and inaction.

The second computational theory identified in this review proposes that low and invariable
sensitivity to food reward may explain the behavioural symptoms of AN (Neuser et al., 2020).
Reward sensitivity in this theory is scaling learned option values at the point of decision-making
(akin to an inverse temperature), and not affecting reward outcomes observed during feedback.
The effect of conceptualising sensitivity in this way is that, when the reward sensitivity is low, food
choices cease to reflect the aspects of food that are normally appetitive, such as calorie density.
Crucially, this sensitivity is not just characterised as an average that is reduced compared to HCs,
but also by its variability over time and different physiological states. This forms a major tenet
of the theory, which asserts that changes in sensitivity to food rewards over time, for instance
in states of hunger and satiety, are narrower in individuals with AN than for individual HCs. To
express this in more formal terms, individuals with AN are theorized to have both a lower average
sensitivity to food rewards and a smaller standard deviation in their sensitivity distribution. These
two factors could account for reduced calorie intake in AN, as high calorie foods are not treated
as more valuable than other foods, and rigid eating patterns in AN, since fluctuations in how
rewarding food is across time are constrained within a more narrow distribution (Neuser et al.,
2020).

DISCUSSION

In this review, we have sought to systematically review findings from research applying
computational methods to study mechanisms behind persistent behavioural changes seen in AN.
Based on 20 articles reviewed, we have identified and described emerging themes in this new field.
These themes centre on the computational investigation of: 1) reinforcement learning in AN; 2)
value-based decision-making; 3) model-based and model-free control over behaviour; 4) cognitive
flexibility; and 5) theory-based accounts. Below we summarise the main findings from this review
and discuss the need to more directly explore the relationship between altered computational
mechanisms and clinically relevant factors.

SUMMARY OF KEY RESULTS

Broadly, computational studies indicate deficits in cognitive processes that guide behaviour in
AN. However, there is considerable variability in findings across research. Based on the current
literature, there is mixed evidence for whether reinforcement learning is abnormal in AN, with
some studies not finding significant alterations in learning rate (Foerde et al., 2021; Verharen et al.,
2019), other studies showing decreased learning from feedback in general (Wierenga et al., 2021)
and other studies showing heightened processing of negative feedback (Bernardoni et al., 2018,
2021; Filoteo et al., 2014).

Several studies in this review reported changes in decision-making in AN. One found choice
performance was impaired in AN due to a greater reliance on recent outcomes (Chan et al., 2014),
whereas another suggested decreased sensitivity to losses as the central mechanism (Verharen
etal, 2019). Choices in AN are also more risk averse in general, but risk aversion is reduced when
actions lead to illness-consistent outcomes, such as reduced body size (Jenkinson et al.,, 2023).
Alongside these findings, research on delay discounting indicates an increased preference for
delayed rather than immediate monetary rewards in adults with acute AN, particularly AN-R
(Decker et al., 2015; Steinglass et al., 2012, 2017). Altered delay discounting is not seen after
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weight-restoration (Decker et al.,, 2015; King et al., 2020) or in adolescents with AN (King et al.,
2016; Ritschel et al., 2015).

Computational studies on model-based and model-free control reported that individuals with
either AN or subclinical EDs use goal-directed (model-based) strategies for behavioural control less
than HCs (Foerde et al., 2021; Onysk & Seriés, 2022). During both acute AN and following weight
restoration, reduced model-based control was seen in both monetary and food-specific contexts
(Foerde et al., 2021).

Finally, computational work on cognitive flexibility in AN has found mixed results. Some research
has shown greater cognitive rigidity in AN, exhibited in a low level of exploration and a tendency to
continue using the same decision strategy (Filoteo et al., 2014). However, another study observed
more flexible adjustment in learning rates in response to changing task demands in a group
recovered from AN (Pike et al., 2023).

IMPACT OF RECOVERY AND CLINICAL RELEVANCE

Only a few studies in this review found that model-derived parameters could predict the severity
of AN symptoms. For example, the effect of body image preoccupation on the strength of model-
based control over behaviour was able to predict scores on self-reported eating disorder scales and
ED membership (Onysk & Series, 2022). Moreover, worse treatment outcomes were associated with
elevated sensitivity to punishment, negative prediction error magnitudes and stronger prediction
error signalling in the caudate (DeGuzman et al., 2017; Filoteo et al., 2014; Wierenga et al., 2021).
The limited number of studies linking computational changes to patient symptoms highlights
that more research will be needed to identify computational changes with functional significance,
which have the highest predictive validity and translational value as neurocomputational markers
of AN (see Paulus et al., 2016).

Another aspect of clinical relevance is whether computational differences resolve or persist after
treatment. Current evidence indicates that prediction error signalling and delay-discounting
rates normalise after weight restoration (Decker et al., 2015; DeGuzman et al., 2017). However,
increased learning from punishment (Bernardoni et al,, 2018, 2021) and decreased model-
based learning (Foerde et al., 2021) persist after weight-restoration and appear to be trait-like.
Based on this dichotomy, future longitudinal studies could map changes in computational
parameters throughout the development and maintenance of AN. This could be used to establish
computational profiles of AN progression, identify latent factors that are malleable or resistant to
change, and to devise different intervention strategies for different phases of illness.

ASSESSING TRANSDIAGNOSTIC AND SPECIFIC SYMPTOMS OF AN

A question which remains is whether differences between AN and HCs identified in computational
studies are specific to AN. For example, increased learning rates in response to negative feedback
observed in AN groups (Bernardoni et al., 2018, 2021; Filoteo et al., 2014) have also been reported
in patients suffering from mood and anxiety disorders (Pike & Robinson, 2022). In patients with
mood disorders, this may lead to the progression of negative affect and negativity bias, driven by
updating beliefs and behaviour in response to negative outcomes too quickly. Mood and anxiety
disorders commonly co-occur with AN (Swinbourne & Touyz, 2007), but whether negative feedback
processing is comparable between these disorders is currently unclear. This could be explored in
transdiagnostic studies. One approach to studying transdiagnostic populations is computational
factor modelling (CFM), which is used to explore associations between changes in cognitive
mechanisms and specific symptom dimensions, rather than diagnostic categories (Wise et al.,
2023). A recent study using CFM identified that deficits in model-based planning were associated
with symptoms of disordered eating, OCD and addiction, suggesting that model parameters
related to goal-directed control correspond to individual differences in compulsivity irrespective
of diagnosis (Gillan et al., 2016). Future studies in the field could therefore use CFM to investigate
whether computational changes are specific to AN or present in multiple conditions.
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ASSESSING DOMAIN-GENERAL AND CONTEXT-SPECIFIC SYMPTOMS OF AN

The studies described in this review suggest that several cognitive changes in AN are domain-
general, detectable in neutral contexts with monetary (rather than disorder-relevant) outcomes.
Nevertheless, several experiments in this review addressed context-specific alterations in AN by
including disorder-relevant stimuli (Foerde et al., 2021; Jenkinson et al., 2023; Onysk & Series,
2022). Deficits in goal-directed control in AN appear to be generalised, occurring in both neutral
and food-relevant situations, rather than being specific to food-related decision-making alone
(Foerde et al.,, 2021). At the same time, research from a subclinical ED population suggests that
deficits in goal-directed control might be amplified in a context where body image concerns are
made salient (Onysk & Series, 2022). Taken at a general level, this amplification in an illness-
specific context fits with research suggesting that propensity for risk-taking in AN increases, when
choices are linked to reductions in body size (Jenkinson et al., 2023). These findings indicate that
AN is subject to both domain-general cognitive changes and context-specific changes, and that
these can be distinguished using experimental paradigms with both neutral and illness-relevant
conditions.

DIFFERENT AN SUBPOPULATIONS

There is much variability in how AN groups are defined across the literature. Some studies described
in this review included participants who completed the testing session in the acute state of AN
upon admission to a treatment program (e.g. Bernardoni et al., 2018, Jenkinson et al., 2023).
Other studies considered participants who were undergoing treatment and were weight-restored
at the time of testing (e.g. Filoteo et al.,, 2014, King et al., 2020), or individuals with a prior AN
diagnosis who have since recovered (e.g. Pike et al., 2023). Age is another an important sampling
factor given that AN typically begins during adolescence, a developmental period that includes
changes in prediction error responses (Hauser et al., 2015), gradual increases in learning rate
(Master et al., 2020) and the emergence of model-based decision strategies (Decker et al., 2016).
Computational processes might therefore differ in different AN subpopulations. For example,
studies testing adolescent AN have not observed altered discount rates (Ritschel et al., 2015; King
et al,, 2016), but studies testing adults with acute AN-R have (Decker et al., 2015; Steinglass et
al.,, 2012; Steinglass et al., 2017). Systematic comparison of AN subpopulations, based on factors
like age and illness duration, could help to clarify which cognitive changes are risk factors for
the development of an eating disorder, result from the disorder itself (e.g. due to malnutrition),
contribute to its maintenance or relapse, or persist as cognitive ‘scars’ after recovery.

COMPUTATIONAL COMPARABILITY

Mixed evidence for altered learning and decision-making processes in AN highlights the need
for reliable experimental paradigms. Inconsistent findings across studies could be the result
of methodological differences, arising from the fact that studies use a range of different tasks,
models and methods for parameter estimation. One way to increase the comparability of findings
as the field advances could involve the introduction of a shared set of models and reporting
criterig, including the assumptions of the fitting method used (for example, whether it guarantees
convergence to true values or relies on approximations like variational Bayes). This way, new
findings could be compared against a common baseline. A second possible explanation for mixed
findings relates to an assumption often held in computational studies, which is that computational
parameters have similar interpretations in different contexts. However, values of computational
parameters and their interpretation might vary across time (Hauser et al,, 2015) and tasks
(Eckstein et al., 2022). The accurate interpretation of group differences in parameter values is
particularly consequential for studies with clinical populations, such as AN, in which the eventual
goal is to inform avenues for treatment. To enable a more nuanced investigation of computational
processes driving AN, future work could test how the same sets of individual and group-averaged
parameters change across different tasks, to better understand how these parameters should be
interpreted in light of various task demands.
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LIMITATIONS

This review used systematic search and inclusion criteria to identify computational psychiatry
studies of AN. The first search step used the terms ‘(‘anorexia’ OR ‘eating disorder’) AND
(‘computational psychiatry’ OR ‘computational model’) for PubMed, Embase, Web of Science and
Google scholar, and the terms ‘anorexia’ AND (‘computational psychiatry’ OR ‘computational
model’) for OSF preprints. These initial search terms were deliberately broad to avoid presupposing
or predefining specific models or tasks. While this approach was able to capture key papers from
the field, we cannot guarantee it was fully exhaustive, as the terms above could be absent from
the title or abstract of otherwise relevant studies. Including more specific search terms at the
first step, such as ‘reinforcement learning’ or ‘delay discounting’, could ensure a more exhaustive
procedure for future reviews on computational psychiatry studies in AN.

CONCLUSION

In this systematic review, we have outlined the current landscape of computational psychiatry in
the context of AN by describing recent efforts to integrate computational neuroscience with the
study of cognition and behaviour in AN. These efforts fall into five major themes: 1) reinforcement
learning; 2) value-based decision-making; 3) model-based and model-free control over behaviour;
4) cognitive flexibility; and 5) theory-based accounts. While computational changes in AN have
been reported in all five areas, results across studies remain variable. Moreover, very few studies
have found associations between computational changes and condition severity or recovery
status. Developing robust models, with a focus on how computational changes are related to
clinical measures, remains an important objective for the field to bridge computational insights
and clinical practice.
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	INTRODUCTION
	INTRODUCTION
	Anorexia nervosa (AN) is an eating disorder (ED) characterised by severe restriction of energy intake relative to individual needs, persistent pursuit of weight loss efforts, and a preoccupation with low body weight . It is estimated that, globally, up to 2% of women and up to 0.3% of men suffer from AN in their lifetime, with the mortality risk for AN estimated to be five times higher than the general population . In conjunction with disordered eating, individuals with AN often experience psychological dis
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	To make sense of behavioural changes seen in those with severely restricted food intake and persistent weight loss efforts, there is a growing interest in research examining the neurocognitive processes behind AN . This has revealed that AN is associated with impairments in cognitive control and decision-making , including reduced cognitive flexibility  and poorer decision-making performance in situations with probabilistic outcomes . Research along these lines has provided a strong foundation for describin
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	A novel framework to address this gap and advance understanding of cognitive mechanisms that underpin maladaptive behaviour in AN comes from computational psychiatry. Computational psychiatry applies methodological and analytical tools grounded in mathematical models to study phenomena related to mental health disorders . By formalising hypotheses in mathematical terms, computational psychiatry often aims to measure latent mental processes in experimental settings, and test how such processes are related to
	(
	Huys et al., 2016
	Huys et al., 2016

	)
	(
	Adams et al., 2016
	Adams et al., 2016

	; 
	Huys et al., 2021
	Huys et al., 2021

	)
	(
	Huys et al., 2015
	Huys et al., 2015

	)
	(
	Maia 
	Maia 

	& McClelland, 2012
	& McClelland, 2012

	)
	(
	Adams et al., 2013
	Adams et al., 2013

	)

	Recent years have seen a surge in interest in computational psychiatry approaches to the study of AN: here, we systematically review studies that have investigated cognition in AN using a computational framework. Our review aims to summarise central insights from this nascent field. A total of 20 articles were identified for final review using systematic search and inclusion criteria. The experimental methods, modelling paradigms, and results across studies were used to ascertain current themes in this new 
	METHODS 
	The methodology for this review was informed by The Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) statement  and previous systematic reviews in the field of computational psychiatry . 
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	SEARCH STRATEGY AND ARTICLE SELECTION 
	To identify relevant articles, PubMed and Embase were queried between 6/10/2022 and 20/10/2022, and Web of Science and Google Scholar were queried on 11/01/2024. This combination of databases was selected for high recall of relevant literature. Past research indicates that combining results from MEDLINE, Embase, Web of Science and Google Scholar has the highest overall recall in systematic reviews . For the present review, PubMed was used rather than MEDLINE because it provides access to both MEDLINE and ot
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	Articles were included if their title/abstract:
	1. Mentioned anorexia nervosa or eating disorders.
	2. Referred to a computational model of behaviour, or included one of the following terms from computational neuroscience: prediction error, reinforcement learning, active inference, learning rate, learning curve, Bayesian inference, temporal discounting, model-free learning, model-based learning, exploration, or exploitation. Here and for subsequent selection criteria, a computational model was defined as a mathematical representation of a cognitive or neural process that included one or more latent variab
	After removing duplicates, papers were selected for full-text evaluation. During the evaluation stage, we excluded review papers and meta-analyses. Published articles and preprints were included in the systematic review if they met the following criteria: 
	1. Reported data from an AN group, or a group that shows symptoms characteristic of AN (e.g. restrictive eating, body image preoccupation). Eligible groups could consist of people who met a clinical threshold for AN, people who had recovered and/or were weight-restored, and people with subclinical symptoms. The motivation for including experiments with subclinical groups in the present review was that many behaviours associated with AN operate on a continuum . Therefore, understanding computational profiles
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	2. Reported data from human participants, rodents, non-human primates or simulated agents as the experimental sample. 
	3. Reported behavioural data from an experimental task or simulated data. 
	4. Reported results based on a computational model of learning, decision-making or behavioural control (e.g. a reinforcement learning model). 
	Theoretical papers (n = 2) that proposed a computational framework of behaviour in AN were included even if they did not meet criteria 1–4. Thirteen papers met the above criteria and were selected. Eight additional sources were identified based on references from the 13 selected papers. The number of additional sources was relatively high because our initial search was not optimised to find articles focused on delay discounting. Seven of the additional sources passed the screening and evaluation criteria. R
	DATA EXTRACTION AND SYNTHESIS 
	We developed a checklist to extract key characteristics from each paper. It included: the aim of the research, hypotheses, study design, sample characteristics, task, computational framework (e.g. reinforcement learning, delay discounting), behavioural results, computational modelling results and the authors’ conclusions. In many cases, neuroimaging results were reported alongside behavioural data. However, since models of neural activity fall outside of the scope of the present review, we do not extensivel
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	REINFORCEMENT LEARNING
	BACKGROUND 
	Altered processing of reward and punishment in AN is well documented. Questionnaire studies have shown that individuals with AN tend to report higher punishment sensitivity, reward sensitivity and harm avoidance . Cognitive testing has shown that adults with AN tend to learn less from feedback overall, an effect that persists after weight restoration and correlates with symptom severity . With recent developments in computational neuroscience, it is now possible to further investigate reward and punishment 
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	SYSTEMATIC REVIEW STUDIES 
	Given the evidence of altered feedback processing in AN (e.g. ), a number of recent computational studies have sought to examine how learning changes in response to reward and punishment feedback by analysing RL parameters, with a focus on learning rates and prediction errors. We will now examine the findings from these studies.
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	EVIDENCE FOR INCREASED LEARNING FROM PUNISHMENT IN AN 
	Three studies in the review suggest increased learning from negative feedback in AN . Bernardoni et al.  observed a significant, but modest, elevation in learning rates following negative outcomes (i.e. punishment) in adolescents with acute AN compared to healthy controls (HCs). This elevation occurred after punishment but not reward, hinting at a learning bias specific to negative feedback. In their sample of adults who had recovered from AN, punishment learning rates themselves were not significantly diff
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	EVIDENCE FOR INCREASED PREDICTION ERROR SIGNALS IN AN
	Rather than examining reward or punishment per se, DeGuzman et al.  focused on prediction errors, the difference between the reward expected and the reward obtained. Neuroimaging results showed stronger responses to prediction errors in the caudate and insula, during acute AN, compared with HCs. For context, independent studies have implicated the caudate in goal-directed action selection , and the insula in error awareness  and decision-making . Unexpected omissions in reward, which produce negative predic
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	EVIDENCE FOR DECREASED LEARNING IN AN 
	In contrast to the studies reviewed so far, there is also evidence for decreased learning in AN compared to HCs . RL modelling analyses of behaviour during an associative learning task showed decreased learning rates for both positive and negative prediction errors in AN . Prediction error magnitudes did not differ between samples; however, negative prediction error magnitudes in AN were associated with worse treatment outcomes. 
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	NO EVIDENCE FOR A DIFFERENCE IN LEARNING IN AN
	In addition to positive results reported above, we note that some computational studies have compared learning rates between AN and HC groups, but did not find significant differences . 
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	EXPLORATION
	A key parameter controlling how much people explore different options and exploit high value options in standard RL models is called the inverse temperature (β), which measures the extent to which choices are based on differences between learned values . The majority of the studies in this review did not find significant differences in values of the inverse temperature parameter between AN and HCs, which could suggest similar levels of off-policy or exploratory behaviour. One exception was Wierenga et al. ,
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	VALUE-BASED DECISION-MAKING 
	BACKGROUND 
	AN symptoms, such as restrictive food choices and resistance to treatment despite dangerously low weight, can be viewed as decision-making impairments . This has led to a vast body of research exploring whether altered decision-making in AN is specific to food and body weight, or whether changes extend beyond these contexts. In laboratory settings, decision-making is often assessed using choice tasks involving monetary rewards, such as the Iowa Gambling Task (IGT) or Balloon Analogue Risk Task (BART). Class
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	SYSTEMATIC REVIEW STUDIES 
	To date, computational studies on decision-making in AN have focused on probabilistic decisions, risk aversion and temporal discounting. We will now review the findings from each of these areas.
	PROBABILISTIC DECISIONS AND RISK AVERSION
	Two computational studies have examined AN choices in probabilistic settings using the IGT . Both found that individuals with AN had reduced performance compared to HCs, but reached different conclusions about the underlying mechanism. Computational modelling by Verharen and colleagues  indicated that individuals with AN were less loss-averse than HCs. As a result, AN participants experienced negative outcomes more often and earned less reward on the task. In contrast, computational modelling by Chan and co
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	The main insight from computational research on risk tolerance has been that individuals with AN are less willing to take risks to earn rewards in general . However, this willingness can change depending on the specific decision context. When rewards were tied to making an onscreen character slimmer, participants with acute and weight-restored AN became more willing to proceed with the trial despite an increased risk of losing money. The direction of this effect reversed when rewards were linked to increasi
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	DELAY DISCOUNTING 
	Delay discounting (also called temporal discounting) aims to measure how well one can delay the receipt of reward. The discounting process is often modelled with a hyperbolic function (see  for review), in which the main computational parameter is the discount rate, k. This parameter captures the reduction in subjective value that an option incurs with increasing delays to receive its corresponding reward. Higher k indicates a greater preference for lower but immediate rewards versus higher but delayed rewa
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	MODEL-BASED AND MODEL-FREE CONTROL OVER BEHAVIOUR
	BACKGROUND 
	A well-established theory of AN proposes that disordered eating emerges as a goal-directed behaviour, where an individual purposefully restricts food intake and finds the outcomes rewarding. Over time, these behaviours shift from goal-directed to habitual control. Once habitual, behaviours that restrict food and reduce body weight continue to occur irrespective of their outcomes, resulting in the rigid, persistent, and compulsive symptoms of AN despite adverse consequences . In the computational literature,
	(
	Steinglass & Walsh, 2006
	Steinglass & Walsh, 2006

	; 
	Uniacke et al., 2018
	Uniacke et al., 2018

	; 
	Walsh, 2013
	Walsh, 2013

	)
	(
	Daw et al., 2011
	Daw et al., 2011

	)

	SYSTEMATIC REVIEW STUDIES 
	To date, two studies have used computational approaches to examine model-based and model-free learning in AN . Foerde et al.  found decreased model-based learning in AN, in both food-specific and monetary tasks, suggesting a domain-general shift in the balance between goal-directed and habitual control over behaviour. This effect persisted even after weight restoration, ruling out the potential influence of starvation. This reduction in model-based learning was replicated in a subclinical ED group tested on
	(
	Foerde et al., 2021
	Foerde et al., 2021

	; 
	Onysk & Seriès, 2022
	Onysk & Seriès, 2022

	)
	(
	2021
	2021

	)
	(
	Onysk 
	Onysk 

	& Seriès, 2022
	& Seriès, 2022

	)

	In contrast to reduced model-based learning observed in both studies, Foerde at al.  found that model-free learning remained intact in acute AN. This finding differed from the subclinical ED sample in Onysk & Seriès , who also showed reduced model-free learning. One possible explanation for the difference could be the samples used in the two studies. Foerde et al.  were unambiguously testing individuals with acute AN, whereas Onysk & Seriès  were testing individuals with high levels of concern about eating,
	(
	2021
	2021

	)
	(
	2022
	2022

	)
	(
	2021
	2021

	)
	(
	2022
	2022

	)

	COGNITIVE FLEXIBILITY 
	BACKGROUND 
	Rigid and often ritualistic eating behaviours, perfectionism, and the strong preference for familiarity over new experiences commonly observed in AN patients have been linked to impairments in cognitive flexibility . Cognitive flexibility refers to the ability to adjust behaviour to changing contingencies in the environment, and it is often studied using paradigms that require relinquishing previously learned rules and adapting behaviour to new contexts . Individuals with AN often exhibit reduced performanc
	(
	Holliday et al., 2005
	Holliday et al., 2005

	)
	(
	Dajani & Uddin, 
	Dajani & Uddin, 

	2015
	2015

	)
	(
	Steinglass et al., 
	Steinglass et al., 

	2006
	2006

	; 
	Wu et al., 2014
	Wu et al., 2014

	)

	SYSTEMATIC REVIEW STUDIES 
	To better understand impairments in cognitive flexibility, Filoteo et al.  used a computational model that assumed set-shifting depends on a competition between an explicit hypothesis testing system and an implicit learning system, implemented in a hybrid neural network where learning was controlled by RL rules. The setup had three parameters with potential relevance to set-shifting: 1) a parameter that captured decisions to follow unusual rules, which the participant had rarely used before, 2) a parameter 
	(
	2014
	2014

	)

	In contrast to research indicating reduced cognitive flexibility in AN, Pike et al.  found evidence for greater cognitive adjustment in response to changing task demands. Here cognitive flexibility was examined from a different angle, focusing on how learning is calibrated to environments with volatile or stable contingencies. Since rewards in volatile environments can be better predicted from more recent feedback, learning rates were expected to increase in volatile environments compared to stable ones. He
	(
	2023
	2023

	)

	THEORY-BASED ACCOUNTS
	In addition to the empirical results above, two computational theories of cognitive change in AN have been developed. The Reference Dependent Model of AN (RDMA) proposes that altered evaluation processes underlie the symptoms of AN . The model is grounded in the idea that people develop internal, subjective values for different situations, based on the outcomes they experience. Within RDMA, the process of transforming outcomes into subjective values rests on a reference point parameter (μ). The reference po
	(
	Rigoli & Martinelli, 2021
	Rigoli & Martinelli, 2021

	)
	k
	k

	The second computational theory identified in this review proposes that low and invariable sensitivity to food reward may explain the behavioural symptoms of AN . Reward sensitivity in this theory is scaling learned option values at the point of decision-making (akin to an inverse temperature), and not affecting reward outcomes observed during feedback. The effect of conceptualising sensitivity in this way is that, when the reward sensitivity is low, food choices cease to reflect the aspects of food that ar
	(
	Neuser et al., 2020
	Neuser et al., 2020

	)
	(
	Neuser et al., 
	Neuser et al., 

	2020
	2020

	)

	DISCUSSION 
	In this review, we have sought to systematically review findings from research applying computational methods to study mechanisms behind persistent behavioural changes seen in AN. Based on 20 articles reviewed, we have identified and described emerging themes in this new field. These themes centre on the computational investigation of: 1) reinforcement learning in AN; 2) value-based decision-making; 3) model-based and model-free control over behaviour; 4) cognitive flexibility; and 5) theory-based accounts.
	SUMMARY OF KEY RESULTS
	Broadly, computational studies indicate deficits in cognitive processes that guide behaviour in AN. However, there is considerable variability in findings across research. Based on the current literature, there is mixed evidence for whether reinforcement learning is abnormal in AN, with some studies not finding significant alterations in learning rate , other studies showing decreased learning from feedback in general  and other studies showing heightened processing of negative feedback .
	(
	Foerde et al., 2021
	Foerde et al., 2021

	; 
	Verharen et al., 
	Verharen et al., 

	2019
	2019

	)
	(
	Wierenga et al., 2021
	Wierenga et al., 2021

	)
	(
	Bernardoni et al., 2018
	Bernardoni et al., 2018

	, 
	2021
	2021

	; 
	Filoteo et al., 2014
	Filoteo et al., 2014

	)

	Several studies in this review reported changes in decision-making in AN. One found choice performance was impaired in AN due to a greater reliance on recent outcomes , whereas another suggested decreased sensitivity to losses as the central mechanism . Choices in AN are also more risk averse in general, but risk aversion is reduced when actions lead to illness-consistent outcomes, such as reduced body size . Alongside these findings, research on delay discounting indicates an increased preference for delay
	(
	Chan et al., 2014
	Chan et al., 2014

	)
	(
	Verharen 
	Verharen 

	et al., 2019
	et al., 2019

	)
	(
	Jenkinson et al., 2023
	Jenkinson et al., 2023

	)
	(
	Decker et al., 2015
	Decker et al., 2015

	; 
	Steinglass et al., 2012
	Steinglass et al., 2012

	, 
	2017
	2017

	)
	(
	Decker et al., 2015
	Decker et al., 2015

	; 
	King et al., 2020
	King et al., 2020

	)
	(
	King et al., 
	King et al., 

	2016
	2016

	; 
	Ritschel et al., 2015
	Ritschel et al., 2015

	)

	Computational studies on model-based and model-free control reported that individuals with either AN or subclinical EDs use goal-directed (model-based) strategies for behavioural control less than HCs . During both acute AN and following weight restoration, reduced model-based control was seen in both monetary and food-specific contexts . 
	(
	Foerde et al., 2021
	Foerde et al., 2021

	; 
	Onysk & Seriès, 2022
	Onysk & Seriès, 2022

	)
	(
	Foerde et al., 2021
	Foerde et al., 2021

	)

	Finally, computational work on cognitive flexibility in AN has found mixed results. Some research has shown greater cognitive rigidity in AN, exhibited in a low level of exploration and a tendency to continue using the same decision strategy . However, another study observed more flexible adjustment in learning rates in response to changing task demands in a group recovered from AN . 
	(
	Filoteo et al., 2014
	Filoteo et al., 2014

	)
	(
	Pike et al., 2023
	Pike et al., 2023

	)

	IMPACT OF RECOVERY AND CLINICAL RELEVANCE 
	Only a few studies in this review found that model-derived parameters could predict the severity of AN symptoms. For example, the effect of body image preoccupation on the strength of model-based control over behaviour was able to predict scores on self-reported eating disorder scales and ED membership . Moreover, worse treatment outcomes were associated with elevated sensitivity to punishment, negative prediction error magnitudes and stronger prediction error signalling in the caudate ( ). The limited numb
	(
	Onysk & Seriès, 2022
	Onysk & Seriès, 2022

	)
	DeGuzman et al., 2017
	DeGuzman et al., 2017

	;
	Filoteo et al., 2014
	Filoteo et al., 2014

	; 
	Wierenga et al., 2021
	Wierenga et al., 2021

	Paulus et al., 2016
	Paulus et al., 2016


	Another aspect of clinical relevance is whether computational differences resolve or persist after treatment. Current evidence indicates that prediction error signalling and delay-discounting rates normalise after weight restoration (). However, increased learning from punishment  and decreased model-based learning  persist after weight-restoration and appear to be trait-like. Based on this dichotomy, future longitudinal studies could map changes in computational parameters throughout the development and ma
	Decker et al., 2015
	Decker et al., 2015

	; 
	DeGuzman et al., 2017
	DeGuzman et al., 2017

	(
	Bernardoni et al., 2018
	Bernardoni et al., 2018

	, 
	2021
	2021

	)
	(
	Foerde et al., 2021
	Foerde et al., 2021

	)

	ASSESSING TRANSDIAGNOSTIC AND SPECIFIC SYMPTOMS OF AN
	A question which remains is whether differences between AN and HCs identified in computational studies are specific to AN. For example, increased learning rates in response to negative feedback observed in AN groups  have also been reported in patients suffering from mood and anxiety disorders . In patients with mood disorders, this may lead to the progression of negative affect and negativity bias, driven by updating beliefs and behaviour in response to negative outcomes too quickly. Mood and anxiety disor
	(
	Bernardoni et al., 2018
	Bernardoni et al., 2018

	, 
	2021
	2021

	; 
	Filoteo et al., 2014
	Filoteo et al., 2014

	)
	(
	Pike & Robinson, 2022
	Pike & Robinson, 2022

	)
	(
	Swinbourne & Touyz, 2007
	Swinbourne & Touyz, 2007

	)
	(
	Wise et al., 
	Wise et al., 

	2023
	2023

	)
	(
	Gillan et al., 2016
	Gillan et al., 2016

	)

	ASSESSING DOMAIN-GENERAL AND CONTEXT-SPECIFIC SYMPTOMS OF AN
	The studies described in this review suggest that several cognitive changes in AN are domain-general, detectable in neutral contexts with monetary (rather than disorder-relevant) outcomes. Nevertheless, several experiments in this review addressed context-specific alterations in AN by including disorder-relevant stimuli . Deficits in goal-directed control in AN appear to be generalised, occurring in both neutral and food-relevant situations, rather than being specific to food-related decision-making alone .
	(
	Foerde et al., 2021
	Foerde et al., 2021

	; 
	Jenkinson et al., 2023
	Jenkinson et al., 2023

	; 
	Onysk & Seriès, 
	Onysk & Seriès, 

	2022
	2022

	)
	(
	Foerde et al., 2021
	Foerde et al., 2021

	)
	(
	Onysk & Seriès, 2022
	Onysk & Seriès, 2022

	)
	(
	Jenkinson et al., 2023
	Jenkinson et al., 2023

	)

	DIFFERENT AN SUBPOPULATIONS
	There is much variability in how AN groups are defined across the literature. Some studies described in this review included participants who completed the testing session in the acute state of AN upon admission to a treatment program (e.g. ). Other studies considered participants who were undergoing treatment and were weight-restored at the time of testing (e.g. ), or individuals with a prior AN diagnosis who have since recovered (e.g. ). Age is another an important sampling factor given that AN typically 
	Bernardoni et al., 2018
	Bernardoni et al., 2018

	, 
	Jenkinson et al., 2023
	Jenkinson et al., 2023

	Filoteo et al., 2014
	Filoteo et al., 2014

	, 
	King et al., 2020
	King et al., 2020

	Pike et al., 2023
	Pike et al., 2023

	(
	Hauser et al., 2015
	Hauser et al., 2015

	)
	(
	Master et al., 2020
	Master et al., 2020

	)
	(
	Decker et al., 2016
	Decker et al., 2016

	)
	(
	Ritschel et al., 2015
	Ritschel et al., 2015

	; 
	King 
	King 

	et al., 2016
	et al., 2016

	)
	(
	Decker et al., 2015
	Decker et al., 2015

	; 
	Steinglass et 
	Steinglass et 

	al., 2012
	al., 2012

	; 
	Steinglass et al., 2017
	Steinglass et al., 2017

	)

	COMPUTATIONAL COMPARABILITY
	Mixed evidence for altered learning and decision-making processes in AN highlights the need for reliable experimental paradigms. Inconsistent findings across studies could be the result of methodological differences, arising from the fact that studies use a range of different tasks, models and methods for parameter estimation. One way to increase the comparability of findings as the field advances could involve the introduction of a shared set of models and reporting criteria, including the assumptions of t
	(
	Hauser et al., 2015
	Hauser et al., 2015

	)
	(
	Eckstein et al., 2022
	Eckstein et al., 2022

	)

	LIMITATIONS
	This review used systematic search and inclusion criteria to identify computational psychiatry studies of AN. The first search step used the terms ‘(‘anorexia’ OR ‘eating disorder’) AND (‘computational psychiatry’ OR ‘computational model’) for PubMed, Embase, Web of Science and Google scholar, and the terms ‘anorexia’ AND (‘computational psychiatry’ OR ‘computational model’) for OSF preprints. These initial search terms were deliberately broad to avoid presupposing or predefining specific models or tasks. W
	CONCLUSION
	In this systematic review, we have outlined the current landscape of computational psychiatry in the context of AN by describing recent efforts to integrate computational neuroscience with the study of cognition and behaviour in AN. These efforts fall into five major themes: 1) reinforcement learning; 2) value-based decision-making; 3) model-based and model-free control over behaviour; 4) cognitive flexibility; and 5) theory-based accounts. While computational changes in AN have been reported in all five ar
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	Anorexia nervosa (AN) is a severe eating disorder, marked by persistent changes in behaviour, cognition and neural activity that result in insufficient body weight. Recently, there has been a growing interest in using computational approaches to understand the cognitive mechanisms that underlie AN symptoms, such as persistent weight loss behaviours, rigid rules around food and preoccupation with body size. Our aim was to systematically review progress in this emerging field. Based on articles selected using
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	Reduced loss aversion parameter in AN vs HC (gains and losses have similar impact on behaviour in AN, contrary to HC where losses have bigger impact on future choices).

	Not found
	Not found


	STUDY
	STUDY
	STUDY

	THEME(S)
	THEME(S)

	PARTICIPANT GROUPS
	PARTICIPANT GROUPS
	WRITTEN AS GROUP NAME (SAMPLE SIZE): MEAN AGE (STANDARD DEVIATION), AND AGE RANGE, IF REPORTED

	DIAGNOSTIC CRITERIA FOR THE AN GROUP(S)
	DIAGNOSTIC CRITERIA FOR THE AN GROUP(S)

	COGNITIVE PROCESS
	COGNITIVE PROCESS

	PARADIGM
	PARADIGM

	KEY FINDINGS
	KEY FINDINGS

	CORRELATION OF MODEL PARAMETERS OR TASK PERFORMANCE WITH CLINICALLY RELEVANT FEATURES (SIGNIFICANT AT P < 0.05)
	CORRELATION OF MODEL PARAMETERS OR TASK PERFORMANCE WITH CLINICALLY RELEVANT FEATURES (SIGNIFICANT AT P < 0.05)


	Jenkinson et al., 
	Jenkinson et al., 
	Jenkinson et al., 
	Jenkinson et al., 
	Jenkinson et al., 

	2023
	2023



	Value-based decision-making
	Value-based decision-making

	Clinical study: 
	Clinical study: 
	Acute AN (n = 31): 24.9 (8.7).
	AN-WR (n = 23): 26.1 (7.5)
	HC low disordered eating (n = 38): 22.9 (3.3)
	HC high disordered eating (n = 35): 22.5 (4.7)
	Non-clinical studies: Study 0 + Study 1: (n = 170): 32.3 (10.6)
	Study 2 (n = 315): 23.4 (6.6)

	Acute AN: met DSM-5 criteria; participated in a treatment programme 
	Acute AN: met DSM-5 criteria; participated in a treatment programme 
	AN-WR: diagnosed by a clinician as no longer meeting DSM-5 criteria; no reported symptoms for > 12 months
	HC high and low disordered eating: BMI, EDE-Q  restraint scores
	(
	Fairburn & Beglin, 
	Fairburn & Beglin, 

	1994
	1994

	)


	Decision-making under uncertainty, risk aversion
	Decision-making under uncertainty, risk aversion

	BART with a body-size condition
	BART with a body-size condition

	Risk taking in Acute AN and AN-WR was modulated by values related to increasing/decreasing body size. Corresponding computational changes in risk aversion, but not loss aversion, were seen in AN-WR.
	Risk taking in Acute AN and AN-WR was modulated by values related to increasing/decreasing body size. Corresponding computational changes in risk aversion, but not loss aversion, were seen in AN-WR.

	Not found
	Not found


	Decker et al., 
	Decker et al., 
	Decker et al., 
	Decker et al., 
	Decker et al., 

	2015
	2015



	Value-based decision-making
	Value-based decision-making

	Timepoint 1:
	Timepoint 1:
	Acute AN (n = 59): 25.0 (7.5)
	HC (n = 39): 24.7 (7.6)
	Timepoint 2: 
	AN-WR (n = 43)
	HC (n = 31)

	Acute AN: met DSM-5 criteria; participated in a treatment programme 
	Acute AN: met DSM-5 criteria; participated in a treatment programme 
	Timepoint 2, AN-WR: measurements after weight restoration to a BMI ≥ 19.5

	Intertemporal decision-making, inhibitory control
	Intertemporal decision-making, inhibitory control

	Delay discounting task
	Delay discounting task

	Lower delay discounting rates in Acute AN vs. HC. The difference at timepoint 1 was driven by AN-R. 
	Lower delay discounting rates in Acute AN vs. HC. The difference at timepoint 1 was driven by AN-R. 
	At timepoint 2, no difference in delay discounting rates in AN-WR vs HC. 

	Not found
	Not found


	King et al., 2016
	King et al., 2016
	King et al., 2016
	King et al., 2016
	King et al., 2016



	Value-based decision-making
	Value-based decision-making

	AN (n = 34): 15.7 (2.5), 12-22 years
	AN (n = 34): 15.7 (2.5), 12-22 years
	HC (n = 34): 16.1 (2.4), 12-22 years

	AN: met DSM-IV criteria; participated in a treatment programme
	AN: met DSM-IV criteria; participated in a treatment programme

	Intertemporal decision-making, inhibitory control
	Intertemporal decision-making, inhibitory control

	ICT
	ICT

	No difference in delay discounting rates in AN vs HC, faster decision speed in AN vs. HC. Decreased brain activation in lateral prefrontal and posterior parietal regions associated with decision-making in AN vs HC.
	No difference in delay discounting rates in AN vs HC, faster decision speed in AN vs. HC. Decreased brain activation in lateral prefrontal and posterior parietal regions associated with decision-making in AN vs HC.

	Not found
	Not found


	King et al., 2020
	King et al., 2020
	King et al., 2020
	King et al., 2020
	King et al., 2020



	Value-based decision-making
	Value-based decision-making

	AN-WR (n = 36): 22.2 (3.3), 17–27 years
	AN-WR (n = 36): 22.2 (3.3), 17–27 years
	HC (n = 36): 21.2 (3.4), 17-27 years

	AN-WR previously met DSM-IV criteria; no reported symptoms for > 12 months
	AN-WR previously met DSM-IV criteria; no reported symptoms for > 12 months

	Intertemporal decision-making, inhibitory control
	Intertemporal decision-making, inhibitory control

	ICT
	ICT

	No differences in behavioural or brain measures in AN-WR vs. HC.
	No differences in behavioural or brain measures in AN-WR vs. HC.

	Not found
	Not found


	STUDY
	STUDY
	STUDY

	THEME(S)
	THEME(S)

	PARTICIPANT GROUPS
	PARTICIPANT GROUPS
	WRITTEN AS GROUP NAME (SAMPLE SIZE): MEAN AGE (STANDARD DEVIATION), AND AGE RANGE, IF REPORTED

	DIAGNOSTIC CRITERIA FOR THE AN GROUP(S)
	DIAGNOSTIC CRITERIA FOR THE AN GROUP(S)

	COGNITIVE PROCESS
	COGNITIVE PROCESS

	PARADIGM
	PARADIGM

	KEY FINDINGS
	KEY FINDINGS

	CORRELATION OF MODEL PARAMETERS OR TASK PERFORMANCE WITH CLINICALLY RELEVANT FEATURES (SIGNIFICANT AT P < 0.05)
	CORRELATION OF MODEL PARAMETERS OR TASK PERFORMANCE WITH CLINICALLY RELEVANT FEATURES (SIGNIFICANT AT P < 0.05)


	Ritschel et al., 
	Ritschel et al., 
	Ritschel et al., 
	Ritschel et al., 
	Ritschel et al., 

	2015
	2015



	Value-based decision-making
	Value-based decision-making

	AN (n = 34): 15.3 (2.7)
	AN (n = 34): 15.3 (2.7)
	rec-AN (n = 33): 21.7 (3.1)
	HC (n = 54): 18.8 (4.4)

	AN: met DSM-IV criteria; recruited from a treatment programme
	AN: met DSM-IV criteria; recruited from a treatment programme
	rec-AN: previously met DSM-IV criteria, no reported symptoms for > 6 months

	Intertemporal decision-making, inhibitory control
	Intertemporal decision-making, inhibitory control

	ICT
	ICT

	No difference in delay discounting parameter (k) in AN vs HC.
	No difference in delay discounting parameter (k) in AN vs HC.

	Not found
	Not found


	Steinglass et al., 
	Steinglass et al., 
	Steinglass et al., 
	Steinglass et al., 
	Steinglass et al., 

	2012
	2012



	Value-based decision-making
	Value-based decision-making

	Acute AN (n = 36): 24.8 (6.4)
	Acute AN (n = 36): 24.8 (6.4)
	HC (n = 28): 25.9 (6.7)

	Acute AN: met DSM-IV criteria; participated in a treatment programme
	Acute AN: met DSM-IV criteria; participated in a treatment programme

	Intertemporal decision-making, inhibitory control
	Intertemporal decision-making, inhibitory control

	Titration task
	Titration task

	Decreased temporal discounting in Acute AN vs HC.
	Decreased temporal discounting in Acute AN vs HC.

	Not found
	Not found


	Steinglass et al., 
	Steinglass et al., 
	Steinglass et al., 
	Steinglass et al., 
	Steinglass et al., 

	2017
	2017



	Value-based decision-making
	Value-based decision-making

	HC (n = 75): 29.0 (7.6)
	HC (n = 75): 29.0 (7.6)
	AN (n = 27): 27.7 (7.5)
	OCD (n = 50): 29.2 (5.8)
	SAD (n = 44): 30.0 (4.0)

	AN: met DSM-IV criteria; participated in a treatment programme (different stages)
	AN: met DSM-IV criteria; participated in a treatment programme (different stages)

	Intertemporal decision-making, inhibitory control
	Intertemporal decision-making, inhibitory control

	Titration task; ICT
	Titration task; ICT

	Decreased temporal discounting in AN vs HC. No significant difference in HC vs OCD and SAD. 
	Decreased temporal discounting in AN vs HC. No significant difference in HC vs OCD and SAD. 

	Anxiety was associated with decreased temporal discounting in all groups.
	Anxiety was associated with decreased temporal discounting in all groups.


	Foerde et al., 
	Foerde et al., 
	Foerde et al., 
	Foerde et al., 
	Foerde et al., 

	2021
	2021



	Model-based and model-free control
	Model-based and model-free control

	AN (n = 41): 27.1 (7.0)
	AN (n = 41): 27.1 (7.0)
	HC (n = 53): 25.6 (5.0)

	AN: met the DSM-5 criteria; recruited from a treatment programme
	AN: met the DSM-5 criteria; recruited from a treatment programme

	Goal-directed behaviour, learning, decision-making
	Goal-directed behaviour, learning, decision-making

	Two-step decision task with monetary and food-specific condition
	Two-step decision task with monetary and food-specific condition

	Decreased model-based contribution to learning in AN vs HC in monetary and food conditions.
	Decreased model-based contribution to learning in AN vs HC in monetary and food conditions.

	Not found
	Not found


	Onysk & Seriès, 
	Onysk & Seriès, 
	Onysk & Seriès, 
	Onysk & Seriès, 
	Onysk & Seriès, 

	2022
	2022



	Model-based and model-free control
	Model-based and model-free control

	ED (n = 35): 30.6 (4.5), 18-38 years
	ED (n = 35): 30.6 (4.5), 18-38 years
	HC (n = 32): 26.4 (4.6), 18-38 years

	ED: reported being on restrictive diet in an attempt to lose weight; scored ≥ 14 on disordered eating and body image preoccupation on the EAT-26  and AAI 
	ED: reported being on restrictive diet in an attempt to lose weight; scored ≥ 14 on disordered eating and body image preoccupation on the EAT-26  and AAI 
	(
	Garner et al., 
	Garner et al., 

	1982
	1982

	)
	(
	Veale et 
	Veale et 

	al., 2014
	al., 2014

	)


	Goal-directed behaviour, learning, decision-making, body image preoccupation
	Goal-directed behaviour, learning, decision-making, body image preoccupation

	Two-step decision task with monetary and body image disturbance condition
	Two-step decision task with monetary and body image disturbance condition

	Decreased model-based and model-free contributions to learning in ED vs HC, with a greater effect in the body image disturbance condition.
	Decreased model-based and model-free contributions to learning in ED vs HC, with a greater effect in the body image disturbance condition.

	The difference between model-based learning in the neutral and body image disturbance condition correlated with self-reported scores on disordered eating and body image preoccupation questionnaires.
	The difference between model-based learning in the neutral and body image disturbance condition correlated with self-reported scores on disordered eating and body image preoccupation questionnaires.


	STUDY
	STUDY
	STUDY

	THEME(S)
	THEME(S)

	PARTICIPANT GROUPS
	PARTICIPANT GROUPS
	WRITTEN AS GROUP NAME (SAMPLE SIZE): MEAN AGE (STANDARD DEVIATION), AND AGE RANGE, IF REPORTED

	DIAGNOSTIC CRITERIA FOR THE AN GROUP(S)
	DIAGNOSTIC CRITERIA FOR THE AN GROUP(S)

	COGNITIVE PROCESS
	COGNITIVE PROCESS

	PARADIGM
	PARADIGM

	KEY FINDINGS
	KEY FINDINGS

	CORRELATION OF MODEL PARAMETERS OR TASK PERFORMANCE WITH CLINICALLY RELEVANT FEATURES (SIGNIFICANT AT P < 0.05)
	CORRELATION OF MODEL PARAMETERS OR TASK PERFORMANCE WITH CLINICALLY RELEVANT FEATURES (SIGNIFICANT AT P < 0.05)


	Pike et al., 2023
	Pike et al., 2023
	Pike et al., 2023
	Pike et al., 2023
	Pike et al., 2023



	Cognitive flexibility; reinforcement learning
	Cognitive flexibility; reinforcement learning

	rec-AN (n = 25): 23.5 (3.8)
	rec-AN (n = 25): 23.5 (3.8)
	Subclinical ED (n = 25): 23.8 (2.8)
	HC (n = 32): 25.0 (6.4)

	rec-AN: self-reported former AN diagnosis from a healthcare professional; no reported symptoms for > 12 months; did not meet DSM-5 criteria for ED 
	rec-AN: self-reported former AN diagnosis from a healthcare professional; no reported symptoms for > 12 months; did not meet DSM-5 criteria for ED 
	subclinical ED: scored ≥ 20 on the EAT- 26 .
	(
	Garner et al., 1982
	Garner et al., 1982

	)


	Adaptive learning, set shifting
	Adaptive learning, set shifting

	The volatility task 
	The volatility task 

	Elevated learning rate adjustments in response to volatility in rec-AN vs HC.
	Elevated learning rate adjustments in response to volatility in rec-AN vs HC.

	Not found
	Not found


	Neuser et al., 
	Neuser et al., 
	Neuser et al., 
	Neuser et al., 
	Neuser et al., 

	2020
	2020



	Theory-based accounts; value-based decision-making
	Theory-based accounts; value-based decision-making

	Punishment sensitivity, reward sensitivity 
	Punishment sensitivity, reward sensitivity 

	Bandit task simulations
	Bandit task simulations

	Low and invariable reward sensitivity associated with lower calorie intake in model simulations.
	Low and invariable reward sensitivity associated with lower calorie intake in model simulations.


	Rigoli & 
	Rigoli & 
	Rigoli & 
	Rigoli & 
	Rigoli & 

	Martinelli, 2021
	Martinelli, 2021



	Theory-based accounts; value-based decision-making
	Theory-based accounts; value-based decision-making

	Choice evaluation
	Choice evaluation

	High reference point as a proposed explanation for behavioural manifestations of AN.
	High reference point as a proposed explanation for behavioural manifestations of AN.
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	(Contd.)
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