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Value-based decision-making is often studied in a static context, where participants decide which option to select from those
currently available. However, everyday life often involves an additional dimension: deciding when to select to maximize
reward. Recent evidence suggests that agents track the latent reward of an option, updating changes in their latent reward
estimate, to achieve appropriate selection timing (latent reward tracking). However, this strategy can be difficult to distin-
guish from one in which the optimal selection time is estimated in advance, allowing an agent to wait a predetermined
amount of time before selecting, without needing to monitor an option’s latent reward (distance-to-goal tracking). Here, we
show that these strategies can in principle be dissociated. Human brain activity was recorded using electroencephalography
(EEG), while female and male participants performed a novel decision task. Participants were shown an option and decided
when to select it, as its latent reward changed from trial-to-trial. While the latent reward was uncued, it could be estimated
using cued information about the option’s starting value and value growth rate. We then used representational similarity
analysis (RSA) to assess whether EEG signals more closely resembled latent reward tracking or distance-to-goal tracking. This
approach successfully dissociated the strategies in this task. Starting value and growth rate were translated into a distance-to-
goal signal, far in advance of selecting the option. Latent reward could not be independently decoded. These results demon-
strate the feasibility of using high temporal resolution neural recordings to identify internally computed decision variables in
the human brain.
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Significance Statement

Reward-seeking behavior involves acting at the right time. However, the external world does not always tell us when an action
is most rewarding, necessitating internal representations that guide action timing. Specifying this internal neural representa-
tion is challenging because it might stem from a variety of strategies, many of which make similar predictions about brain ac-
tivity. This study used a novel approach to test whether alternative strategies could be dissociated in principle. Using
representational similarity analysis (RSA), we were able to distinguish between candidate internal representations for selec-
tion timing. This shows how pattern analysis methods can be used to measure latent decision information in noninvasive neu-
ral data.

Introduction
Neural research on decision-making has provided detailed
accounts of how rewards are compared between options (A vs
B), to determine which option should be selected (Padoa-
Schioppa, 2011; Rich and Wallis, 2016; Hunt and Hayden, 2017;
Murray and Rudebeck, 2018; Fouragnan et al., 2019). However,
everyday life also requires us to decide when to act on our selec-
tion (Khalighinejad et al., 2020a,b). For example, we might have
purchased an avocado to use during the week, but want to time
when we use it, to ensure it is not under or overripe. Such a deci-
sion can be challenging to optimize because the rewards associ-
ated with an option are rarely stationary and, as a result, the
timing of selection is critical to achieve the desired outcome.

Prior research has shown that the basal forebrain integrates
recent experience with ongoing sensory information about an
option’s reward prospect, to guide decisions about selection tim-
ing (Khalighinejad et al., 2020a,b). But how such timing is
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calibrated without ongoing sensory reward cues remains largely
unknown. Recent results indicate that the dorsal anterior cingu-
late cortex can encode latent information about an option’s pro-
gress to a reward threshold, in the absence of sensory input (Stoll
et al., 2016). This suggests that option selection could be timed
using an internal representation that continuously updates an
estimate of the option’s latent reward (latent reward tracking).
While this proposal holds theoretical appeal, optimal selection
timing could also be achieved using prospection (Bulley et al.,
2016) and delay estimation (Coull et al., 2011; Hassall et al.,
2021), to anticipate when an option will be most rewarding in
the future and initiate selection when that time point is reached
(distance-to-goal tracking).

Here, we sought to develop an approach that could distin-
guish between these strategies. This is challenging because latent
reward and distance-to-goal are often correlated; as reward
increases toward a selection threshold, the distance to the selec-
tion event decreases. Therefore, even neural activity that appears
to track one variable might be equally well explained by the
other. Identifying which of these variables better fits neural
activity is a critical step toward a mechanistic explanation of
how the brain computes decision timing (O’Reilly and Mars,
2011). The present experiment recorded electroencephalo-
grams (EEG) while human participants made selection tim-
ing decisions. Participants were shown an option that had a
distinct starting value and growth rate. With each successive
trial, the reward for deciding to select updated based on the
growth rate, without corresponding sensory changes to indi-
cate the current value. Pattern classification was then used to
confirm that both an option’s latent reward and distance-to-
goal could be decoded from the EEG signal, consistent with
the fact that the two variables were correlated and, therefore,
that the neural representation of either variable could explain
the decoding in both cases. Representational similarity anal-
ysis (RSA) was then used to examine whether EEG signals
corresponded more closely to latent reward tracking or dis-
tance-to-goal tracking, while controlling for each variable.
We predicted that neural signals would be more consistent
with latent reward tracking, based on prior indications that
reward monitoring is used to initiate select decisions (Stoll et
al., 2016; Khalighinejad et al., 2020a,b).

The results from this experiment indicate that the two deci-
sion strategies could be dissociated. Neural responses were better
explained by distance-to-goal tracking. Independent evidence for
latent reward tracking was not detected. These results suggest
that, in some contexts, decisions about when to select an option
might be made by transforming option information into an esti-
mate of optimal selection timing. At a broader level, we highlight
the utility of time-resolved EEG decoding to disambiguate latent
decision variables in human participants.

Materials and Methods
Participants
We set a target sample size of 32 participants based on previous M/EEG
studies in our group (Hall-McMaster et al., 2019; Tankelevitch et al.,
2020; Wolff et al., 2020). Five participants were excluded from the initial
sample. One participant was excluded based on low behavioral perform-
ance, which fell more than three SDs below the mean percentage of
points gained on the task (89.29%). Four participants were excluded
based on excessive EEG artefacts, which lead to the rejection of.400 tri-
als during preprocessing (.21.27–27.47% of trials depending on the par-
ticipant). To meet the 32-participant target, we therefore collected data
from five additional participants. The final sample were between 18 and

35 (mean age = 25, 19 female). All participants reported normal or cor-
rected-to-normal vision (including normal color vision) and no history
of neurological or psychiatric illness. Participants received £10 per hour
or course credit for taking part and could earn up to £20 extra for task
performance. The study was approved by the Central University
Research Ethics Committee at the University of Oxford (R58489/
RE001), and all participants signed informed consent before taking part.

Materials
Stimuli were presented on a 24-inch screen with a spatial resolution of
1920� 1080 and refresh rate of 100Hz. Stimulus presentation was con-
trolled using Psychophysics Toolbox-3 (RRID: SCR_002881) in
MATLAB (RRID: SCR_001622, version R2015b). F and J keys on a
standard QWERTY keyboard were used to record left-hand and right-
hand responses. EEG data were recorded with 61 Ag/AgCl sintered
electrodes (EasyCap), a NeuroScan SynAmps RT amplifier, and Curry 7
acquisition software (RRID: SCR_009546). Electrode impedance was
reduced to ,10 kX before recording. EEG data were preprocessed in
EEGLAB (RRID: SCR_007292, version 14.1.1b; Delorme and Makeig,
2004). Data were analyzed in MATLAB (RRID: SCR_001622, version
R2020a). Bonferroni–Holm (BH) corrections were implemented using
David Groppe’s MATLAB toolbox (https://bit.ly/3xLBJlW). Bayesian
paired t-tested were implemented using Bart Krekelberg’s MATLAB
toolbox (https://klabhub.github.io/bayesFactor/). Bonus items used to
incentivise performance were created by icon developers Smashicons,
Freepik, Flat Icons, Goodware, Pixel Buddha, Kiranshastry, Dimitry
Miroliubov, Surang and accessed at https://www.freepik.com/.

Code accessibility
Task and analysis code, as well as raw and preprocessed data can be
accessed at: https://osf.io/vwd3k/.

Experimental design
Participants performed a sequential decision-making task that required
deciding when to select an option on screen, as its reward changed from
trial to trial (Fig. 1). There were two critical aspects to the task. First,
each option had a starting value and a growth rate (the increase in
reward per trial). These properties were varied independently, resulting
in unique options that reached a 500-point reward maximum after a dif-
ferent number of trials. After reaching the 500-point maximum, the
option reward began to decline, encouraging participants to select
the option on the single trial when it was at maximum reward. Second,
the visual appearance of the option remained the same from trial to trial,
despite changes in its reward value.

A single option was presented in each trial run. The option was a
circle stimulus with an approximate visual angle of 3.79° (150� 150 pix-
els), calculated based on an approximate viewing distance of 60 cm. The
option contained a colored wedge, the size of which indicated its starting
value and the color of which indicated its growth rate. On each trial in
the run, participants decided between waiting and selecting the option.
The run continued until participants decided to select, up to a maximum
of 16 trials. Each trial had three phases: a decision phase, where partici-
pants were instructed to decide whether to wait (allowing the option’s
latent reward to update) or select the option (to gain the latent reward);
a response phase, where participants made a manual response to indicate
their choice; and a feedback phase. In the decision phase, the option was
presented for 800ms on the left or right of the screen, with the center of
the option being presented at an approximate visual angle 3.16° (125 pix-
els) above and 3.16° to the left or right of the screen’s center. The deci-
sion phase was followed by a 250-ms blank delay. The response phase
began with the presentation of a central fixation cross, with the option
appearing randomly on the left or right of the screen. Participants were
instructed to press the button on the side where the option was pre-
sented to select it (e.g., left button if the option was presented on the left)
and to press the button on the opposite side to wait (e.g., left button if
the option was presented on the right). Since the option appeared ran-
domly on the left or right of the screen, independent of where it had
been presented in the decision phase, participants were prevented from
preparing a motor response before the response phase, allowing us to
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Figure 1. A, B, Task design. Participants were presented with an option that had a specific starting value (wedge size) and growth rate (color). A, Participants could choose to let the
option’s reward increase, by selecting the blank side of the screen during the response phase. The option reward was then updated by the growth rate and the participant performed another
trial with the same item. Importantly, the same starting value and growth rate information were presented for each trial within a run, although the underlying option reward was changing.
B, Participants could choose to end the trial run by selecting the side of the screen with the option during the response phase. Participants then received the current option reward and started
a new trial run, with a new option. Option rewards increased linearly up to their maximum value (500 points), after which value decayed exponentially if participants continued to make wait
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decouple decision and response information in the neural analyses. In
the feedback phase, participants received one point for a wait response
and the option’s latent reward for a select response (0–500 points).
Feedback presentation lasted 500ms. Each trial was followed by an
inter-trial interval (ITI). Durations for each ITI in a run were taken from
a shuffled ITI vector. The vector contained eight durations from 500 to
1200 ms, which were spaced 100ms apart. The vector contained two rep-
etitions of each duration.

The reward associated with each option could grow to a maximum
of 500 points. Participants were told about the maximum, and asked to
select each option when the maximum was reached. The reward was
computed with the following linear function: r ¼ s1gðt � 1Þ, where r is
the reward, s is the starting value, g is the growth rate and t is the trial
number within the run. Eight different starting values were used in the
study (0, 50, 100, 150, 200, 250, 300, 350). On trial runs where the start-
ing value was 0, a colored wedge corresponding to 7.5 points was used
so that participants could see the colored wedge and determine the
growth rate. Five different growth rates were used in the study (35, 40,
50, 60, 80). These were selected to maximize behavioral variability, pro-
ducing an even spacing in optimal trial on which to select the option (16,
14, 12, 10, 8 trial steps), when the option started from a value of 0 points.
For each participant, two colors were used per growth rate so that
abstract growth rate information, independent of option color, could be
decoded from neural recordings. The mapping between specific colors
and specific growth rates was pseudorandomized across participants,
who were assigned to one of four stimulus groups. All groups had two
colors per growth rate, but specific colors corresponded to different
growth rates for each group. On trials where the updated option value
exceeded 500 points, the option value was rounded down to the 500-
point maximum. The largest amount that the 500 points would have
been exceeded by a condition without rounding down was 70 points. If
participants did not select the option on the trial where it reached its
maximum, the reward associated with the option would begin an expo-
nential decay given by the equation:r ¼ mðe�ktÞ, where r is the reward,
m is the maximum value of 500 points, e is Euler’s number, k is a decay
constant set at 0.5 and t is the number of trials elapsed since the option
reached the 500-point maximum. This equation meant that each option
had just one trial at maximum reward in a run. It was designed to be
both distinct from the linear growth function above and uniform across

all conditions, so that participants could not gain information about an
option through over-waiting and there would be a strong incentive for
participants to end the run once the maximum was reached. To motivate
participants to earn as many points as possible, every five percent of the
maximum task points earned resulted in a bonus item being unlocked
(such as a rocket ship, balloons or an electric guitar), each of which cor-
responded to additional £1 bonus payment.

Participants completed a training sequence of 40 trial runs before the
main experiment. If a participant scored below 70% or wished to do
more practice, they completed an additional 40–80 trial runs. Eight par-
ticipants completed 40 practice runs, twenty-one participants completed
80 practice runs and one participant completed 120 practice runs. The
main purpose of the practice was to learn the correspondence between
the 10 colors and the five growth rates. To facilitate this, participants
were presented with an on-screen color legend during task practice,
which indicated the colors for each growth rate. The color legend was
not presented during the main task. Before beginning the main experi-
ment, participants performed a color ranking task, in which they had to
rank the colors on the basis of their growth rates (from 1= lowest growth
rate to 5= highest growth rate). If any ranking was incorrect, the task
was repeated; participants needed to score 100% on the ranking task
before starting the main experiment. During EEG recording, participants
performed 240 trial runs, with equal numbers of runs for each starting
value/growth-rate combination. Equal number of runs were also per-
formed using the two colors for each growth rate. As participants
decided when to select the option during each trial run, different num-
bers of individual trials were recorded per participant. On average, we
recorded 1660 trials for each participant (min= 1412, max= 1898).

EEG preprocessing
EEG data were down-sampled from 1000 to 250Hz and filtered using
40-Hz low-pass and 0.01-Hz high-pass filters. For each participant,
channels with excessive noise were identified by visual inspection and
replaced via interpolation, using a weighted average of the surrounding
electrodes. Data were then re-referenced by subtracting the mean activa-
tion across all electrodes from each individual electrode at each time
point. Data were divided into epochs from �1 to 15 s from the first
option onset of each trial. Epochs containing artefacts (such as muscle
activity) were rejected based on visual inspection. Data were then sub-
jected to an Independent Component Analysis. Structured noise compo-
nents, such as eye blinks, were removed, resulting in the data set used for
subsequent analyses.

Behavioral analyses
To test whether selection timing was sensitive to task variables, we used
linear regression. We first tested whether starting value and growth rate
could be used to predict the trial on which the option was selected within
the run. This used the following equation to estimate one b per predic-

tor for each participant: t ¼ b 01b 1s1b 2
1
g
1« , in which t is the trial

where the option is selected,b 0 is a constant, s is the starting value, g is

the growth rate and « is the residual error. The
1
g
in this expression arises

from the fact that the reward, r ¼ s1gðt � 1Þ: This in turn means that
the trial on which an option reaches maximum reward, rmax, can be cal-

culated as: t ¼ rmax � s
g

11. While appropriate because of the reward dy-

namics in this task,
1
g
has the effect of inverting growth rate values in the

regression. This means that higher growth rates are represented with
lower numbers. We therefore multiplied the subsequent b 2 estimates by
�1, to correctly interpret the direction of the effect. Once one b had
been estimated per predictor for each participant, the 32 participant b s
for starting value and the 32 participant b s for growth rate were tested
against zero in separate two-tailed t tests. In further exploratory analyses,
we found that participants tended to select options earlier than would be
optimal for the slowest trial runs (i.e., those that took the most trials to
reach maximum reward). We use the term action bias to refer to this
tendency to select earlier than would be optimal for reward

/

responses. Trial runs lasted up to a maximum of 16 trials. C, Option properties. Options could
have one of eight starting values, ranging from 0 to 350 points. Starting value was indicated
by the size of a wedge shown on screen (with wedge size oriented randomly on each trial
run). The option could have one of five growth rates, which determined the increase in an
option’s latent reward per wait response. Growth rates included 35, 40, 50, 60, and 80 points
per wait trial, which were selected to maximize variability in the optimal select trial from a
starting value of 0. Two colors were used per growth rate for each participant. The two color
sets were used interchangeably during the task. One trial run could use a color from set A
and the next could use a color from set B, or vice versa. D, Regression coefficients showing
the influence of starting value and growth rate on the timing of option selection (trial on
which the option was selected within the trial run). The lower middle and upper horizontal
bars within each plot indicate the 25th percentile, the median and the 75th percentile,
respectively. Colored circles within each box show the mean across participants and vertical
lines extending from these circles show the SEM. Vertical whiskers extending from each box
indicate the most extreme upper and lower values within 1.5 times the interquartile range.
Values outside this were deemed outliers and are indicated with a 1 symbol; *** above
each condition indicates regression coefficients are significantly different from zero at
p, 0.001. E, F, Summary of selection timing for each starting value-growth rate combina-
tion. E, The optimal trial on which to select each option to get the maximum number of
points. F, The median trial on which participants selected each option. G, The trial on which
participants selected the option (y-axis) as a function of the optimal trial to select the option
to gain maximum reward (x-axis). The black diagonal provides a reference line for an optimal
agent and the purple line shows mean participant data. Shading around the purple line
shows the SEM. H, I, Summary of performance biases for each starting value-growth rate
combination. H, The difference between the optimal and empirical selection timing (the
action bias). I, The difference between the median number of points earned and the maxi-
mum number that could be earned (the reward loss).
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maximization. The action bias was computed by subtracting the optimal
trial to select the option within the run from the empirical trial on which
the option was selected. The vector was then multiplied by�1 to convert
the action bias to a positive scale. The following regression equation was
used for the action bias analysis: b ¼ b 01b 1t1« , where b is the action
bias, b 0 is a constant, t is the optimal to trial on which to select the
option to gain maximum points and « is the residual error. The resulting
32 participant b 1 estimates were tested against zero using a two-tailed t
test. Using a similar approach, we explored whether the amount of
reward lost on each trial run could be predicted from the optimal num-
ber of trials to wait for each condition. The reward loss was computed by
subtracting the amount of reward earned on each run from the total
reward possible on that run. The total reward possible was the 500-point
maximum plus one point for each wait decision needed to reach the
optimal selection time. The reward loss vector was then multiplied by
�1 to convert it to a positive scale. The following regression equation was
used for the reward loss analysis: l ¼ b 01b 1t1« , where l is the reward
loss, b 0 is a constant, t is the optimal to trial on which to select the option
to gain maximum points and « is the residual error. The resulting 32 partic-
ipant b 1 estimates were tested against zero using a two tailed t test. Trial
runs in which a select response was not made within 16 trials were excluded
from all behavioral analyses. Dependent and independent variables were z-
scored before running all regressions. Exploratory analyses were corrected
for multiple comparisons using the BH correction (Holm, 1979). The cor-
rection was applied within each analysis. For the one exploratory compari-
son between starting value and growth rate regressors, the a threshold was
unchanged. For the action bias and reward loss exploratory analyses (which
both used the optimal trials to wait as a predictor), the a threshold was cor-
rected for two exploratory tests.

EEG analyses
We conducted a series of multivariate EEG analyses to understand the
neural processes underpinning task performance. The analyses aimed to
identify EEG signals that tracked three sets of task variables: (1) exter-
nally presented variables (starting value and growth rate); (2) internally
represented variables (distance-to-goal and latent reward); and (3) action
variables (distance-to-select, latent reward-to-select and select vs wait
response). We predicted that participants would track an option’s latent
reward and use this information to decide when to select the option, a
strategy that would be reflected as strong latent reward encoding.

Cross-validated neural decoding
To test the encoding of each task variable, we used a cross-validated decod-
ing approach (Figs. 2A–H, 3A–C). We will describe the approach in general
terms first and provide details about the specific analyses in subsections
below. To decode a specific task variable, we selected data from the relevant
trial (e.g., trial 1 within the run). Trials that involved a select response or no
response were excluded. Data were baselined from 250 to 50ms before trial
onset and channel demeaned before all analyses. The analysis then ran
through a series of train and test folds. In each fold, a maximum of one trial
per condition was held out as test data. As an example, the test trials for one
starting value fold could contain a total of 8 trials with one trial for each
starting value. The remaining trials were used as the training data for that
fold. The number of trials for each condition was balanced in the training
fold by selecting a random subsample of nontest trials for each condition.
The number of trials in each random subsample was one trial less than the
lowest number of trials across the conditions, for trial positions 1–3.
Analyses primarily focused on trial positions 1–3 because these were trials
in which the majority of conditions (39/40) had not yet resulted in a deci-
sion to select, under the optimal selection timing. Balancing the trial num-
bers across conditions and trial positions meant the decoder would not be
biased toward a particular condition and that decoding results could be
compared between trial positions.

Once the training data and test data were organized for a fold, the
training trials were averaged for each condition. This produced a chan-
nels � time matrix that reflected the mean scalp topography for each
condition. Averaging over training trials within each condition has been
shown to improve decoding accuracy (Isik et al., 2014; Grootswagers et
al., 2017). In EEG analyses based on voltages, it has the additional benefit

of averaging out nonphase-locked background oscillatory activity.
Following this step, each held out test trial was compared with the aver-
age topographies. To make this comparison, Mahalanobis distances
(MDs) were calculated at each time point between the test trial (a
vector of 61 channel values) and each condition mean (each a vec-
tor of 61 channel values). We selected the MD to measure decoding
because it explicitly accounts for covariance structure in the data.
This makes it well suited to EEG data, where channel values tend
to be highly correlated. The MD between the test vector (pattern
A) and a condition vector (pattern B) was computed as:

MDAB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðPatternA� PatternBÞT � Cov�1ðPatternA� PatternBÞ

q
,

where Pattern A – Pattern B is the difference between topographies, T is
the transpose and Cov�1 is the inverse of the channel covariance matrix.
The channel covariance matrix was estimated using within-condition error,
meaning that trials were condition demeaned before estimating the covari-
ance (Walther et al., 2016). The channel covariance estimate also included a
shrinkage estimator (Ledoit and Wolf, 2004), which downweights noisy co-
variance estimates.

Once MDs had been computed between each test trial in a fold and
the condition averages, the MDs for each trial were then entered into a
regression. The MDs were used as the dependent variable and a vector
of predicted condition distances were used as the independent variable.
The predicted distance vector assumed a linear increase in MD for more
dissimilar conditions. For example, a test trial with a starting value of 0
would have a distance vector of [0,1,2,3,4,5,6,7], indicating there is no
expected difference between the test trial and the condition mean for a
starting value of 0, but a maximal difference between the test trial and
the condition mean for a starting value of 350. Both dependent and inde-
pendent variables were z-scored before running the regression, which
was performed at each time point. Once this regression procedure had
been completed for each test trial in the fold, the next analysis fold
began, using a new set of test trials. This process continued until all trials
had been used as a test trial once, resulting in a trials � time matrix of
regression coefficients (b s). To ensure the b estimates were robust, the
entire analysis procedure was repeated 50 times, with eligible data being
randomly assigned to different folds on different repetitions. The b s
were then averaged over these repetitions and over trials, providing a
time course of b that we interpret as neural coding of a given task vari-
able. Once this process was completed for trial position 1 data, it was
applied to data from trial positions 2 and 3.

To assess significant decoding of a task variable, b estimates for each
trial position were averaged over the decision phase, from trial onset
(0 s) to the offset of the option stimulus (800ms) and tested against 0
using two-tailed t tests, with BH adjusted a thresholds to correct for the
three trial positions (Holm, 1979). To test differences in decoding
between trial positions, the b averages were compared for each pair of
trial positions (i.e., 1 vs 2, 1 vs 3, 2 vs 3) using two-tailed t tests, with
adjusted a thresholds to correct for three between-position tests (Holm,
1979). When examining the decoding time course for a task variable, trial
numbers were matched across conditions during the analysis but not across
trial positions to increase power. Time courses were smoothed with a 20-ms
Gaussian kernel before nonparametric cluster-based permutation testing,
which was used to correct for multiple comparisons (Maris and Oostenveld,
2007; Hall-McMaster et al., 2019; Sassenhagen and Draschkow, 2019).

Presented variables
Starting value. When decoding information related to the starting

value of the choice item (i.e., the arc length), there were eight possible
starting value conditions (0, 50, 100, 150, 200, 250, 300, and 350). For
time-averaged analyses, where trial numbers were balanced across the
conditions and trial positions, the average number of trials per condition
across participants was 19.5 with a SD of 2.94. When examining the time
course at trial position 1, where starting value coding was strongest,
matching trial numbers at trial position resulted in a mean of 25.7 trials
per condition and a SD of 2.46.

Growth rate. When decoding abstract growth rate information, the
analysis was adjusted to leverage the fact that there were two colors per
growth rate. This allowed us to decode abstract growth rate information

1808 • J. Neurosci., March 2, 2022 • 42(9):1804–1819 Hall-McMaster et al. · Integrating Reward for Prospective Behavior



that could not be attributed to the color of the option. Trials using the
first color set were assigned to data split A and trials using the second
color set were assigned to data split B. We then maintained a strict sepa-
ration between data splits A and B in our decoding analyses. Data split A
was only used as training data and data split B was only used as test data
(and vice versa). There were five possible growth rate conditions (35, 40,
50, 60, 80). The regression for each test trial therefore used a vector of
predicted condition differences that had five values as the independent
variable. For time-averaged analyses, where trial numbers were balanced
across conditions, trial positions and color set, the average number of tri-
als per condition across participants was 17.4 with a SD of 1.29. When
examining the time course at trial position 1, where growth rate coding
was strongest, matching trial numbers for each growth rate resulted in a
mean of 19.9 trials per condition and a SD of 2.05.

Latent variables
Latent reward. For latent reward decoding, data were separated into

50-point bins, starting from 0 points (bin 1 = 0–49 points, bin 2 = 50–
99 points, bin 3 = 100–149 points, bin 4 = 150–199 points, bin 5 = 200–
249 points, bin 6 = 250–299 points, bin 7 = 300–349 points, bin
8 = 350–399 points, bin 9 = 400–449, bin 10 = 450–500 points). To
make the analysis comparable with our analysis of distance-to-goal
(described next), we used a sliding range of six latent reward bins (bins
4–9 at trial position 2 and 5–10 at trial position 3) that corresponded
approximately to the goal distances used in distance-to-goal decoding.
Note that at trial position 1, the reward value of the choice item is the
starting value. The item’s latent reward value only differs from starting
value after trial 1, which is why this analysis only considers trials 2 and
3. Statistical tests were accordingly corrected for two comparisons
(Holm, 1979). For time-averaged analyses, where trial numbers were
balanced across bins and trial positions, the average trials per condition
was 21.4, with a SD of 1.77. The vector of predicted conditions differ-
ences used in the regression was based on the difference in reward bin
number. When examining the time course at trial position 2, the aver-
age number of trials per condition was 21.9, with a SD of 1.73.

Distance-to-goal. This task variable refers to how many trials away
the participant is from the optimal trial to select the option. When
decoding distance-to-goal information, trials were therefore sorted by
the difference between the current trial and the optimal trial to select the
option. The analysis used a sliding range of distance-to-goal conditions
at each trial position (trial position 1= goal distances 3–8, trial position
2= goal distances 2–7, trial position 3 = goal distances 1–6). The sliding
range aimed to maintain the same future selection trials in the analysis at
each trial position. At trial position 1, the optimal trials to select spanned
from trial four to trial 9 within the run. Sliding the goal distances meant
this was also true at trial positions 2 and 3. This ensured that differences
in decoding between trial positions were not because of differences in
starting value, growth rate or the optimal trial to select, because these
factors were consistent across positions. The choice of which goal distan-
ces to use aimed to balance a trade-off between data quality, in which
behavior was increasingly suboptimal further into a trial run (Fig. 1G),
and power for the regressions between each test trial’s MDs and the vec-
tor of expected condition distances. Using more goal distances would
increase the number of points for these regressions but it would also
include more trial runs in which selection behavior was increasingly sub-
optimal. While we aimed to balance this trade-off, the choice of goal dis-
tances was still somewhat arbitrary. This made it important to replicate
the distance-to-goal coding results in the more carefully controlled RSA
analyses (described below). When balancing all trial numbers across the
conditions and trial positions, the average number of trials per condition
across participants was 11.3 with a SD of 3.12. When examining the time
course at trial position 2, where distance-to-goal coding was strongest,
matching trial numbers across distance-to-goal conditions resulted in a
mean of 16.7 trials per condition and a SD of 1.02.

Action variables. The previous analyses were performed separately at
each trial position. When decoding action variables, trials were pooled
across trial positions 3–6 and entered into a single analysis to boost
power. The increased trial numbers allowed us to do 10-fold cross-vali-
dation, as opposed to the more cumbersome process of holding out one

trial per condition for each test set in the analyses above. The trials in
nontest folds were used as training data. The number of trials from each
condition and each trial position were balanced in the training set by
taking random subsamples from the nontest folds. To avoid potential
reaction time (RT) differences between conditions affecting the decoding
results, RTs for each condition in the training set were statistically com-
pared using paired two-tailed t tests. The a threshold was adjusted to
correct for multiple comparisons using the BH correction (Holm, 1979).
If two conditions had significantly different RTs, a new random subsam-
ple was selected from the available training trials until no significant dif-
ferences between condition RTs were detected. Only then was the
analysis permitted to proceed with calculating multivariate distances
between training and test trials. As with previous analyses, we repeated
the analysis 50 times and averaged the outputs to ensure stability of the
decoding results.

Distance-to-select. The distance-to-select refers to the number of tri-
als between the current trial and the trial where a select response is
made. For this analysis, select distances of 1–3 were used as conditions.
To control for the possibility that the trial immediately before the deci-
sion to select was distinct from all other trials before the decision to
select, we ran a control analysis that only included select distances of 2
and 3. To control for the possibility that our decoding results were
driven by different numbers of left-handed and right-handed responses,
we ran a second control analysis for select distances 1–3, in which we
additionally balanced the number of left/right button presses.

Reward-to-select. The reward-to-select refers to the difference in
latent reward on the current trial and the latent reward when the select
response is made. We calculated this difference for each trial in each
run. The reward-to-select values were then separated into 50-point bins
(bin 1 = 0–49 points, bin 2 = 50–99 points, bin 3= 100–149 points).
Reward-to-select bins of 1-3 were used as conditions in the analysis.

Wait versus select. This was same as the distance-to-select procedure,
decoding select trials versus the previous wait trial (i.e., distance-to-select
0 vs distance-to-select 1).

RSA
We used RSA (Kriegeskorte et al., 2008) to control for the possible influ-
ence of extraneous task variables when decoding distance-to-goal and
latent reward (Fig. 2I–L). The logic of this approach was to regress out
neural coding of starting value, growth rate and latent reward informa-
tion, before testing for distance-to-goal coding. In a similar manner, we
wished to regress out neural coding starting value, growth rate and dis-
tance-to-goal, before testing for latent reward coding. If decoding is still
significant for the variable of interest after removing the influence of
other task variables, this confirms that our earlier cross-validated decod-
ing result is not being driven by correlations between task variables. If
decoding for a variable of interest is no longer significant, it indicates
that our earlier cross-validated decoding result could have been driven
by another task variable.

We first focused on the analysis of data from trial position 1. We iter-
ated through each starting value-growth rate-color set combination,
yielding 80 conditions in total (eight starting values � five growth rates
� two color sets). The 80 conditions were repeated three times each in
the experiment. However, a condition could have less than three trials
available for analysis at a given trial position because of trials being
rejected during preprocessing or because of trials containing a select
response. To ensure balanced trial numbers in the RSA, we included
conditions with all three available trials at a given trial position. This
resulted in 15/80 conditions being excluded on average at trial position
2, where latent reward and distance-to-goal were detected in earlier
decoding analyses. No significant differences were found between the
excluded and included conditions on trial 2, based on mean starting
value (t(31) = �0.508, p=0.615) or mean growth rate (t(31) = �1.015,
p=0.318). For each eligible condition, we averaged over trials to get the
mean scalp topography at each time point. MDs between each pair of
conditions were computed at each time point, resulting in a participant-
specific representational dissimilarity matrix (RDM) for each time point.
Next, we constructed a set of model dissimilarity matrices to reflect the
expected dissimilarity structure based on different task variables. Model
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matrices were calculated by computing the difference between each con-
dition pair of a given task variable (starting value, growth rate, distance-
to-goal, latent reward, color set used to indicate the growth rate). Note
that unlike the decoding analyses, here the latent reward model was not
based on the difference in reward bins but the exact difference in latent
reward between conditions.

The first stage regression aimed to remove information that was ex-
traneous to the variable of interest from the data RDMs at each time
point. When examining latent reward as a variable of interest, model
RDMs for the extraneous variables (starting value, growth rate distance-
to-goal, number of trials used to compute the condition average, growth
rate color set), and the data RDM were transformed into vectors and z-
scored. For each time point, the data RDM was used as the dependent
variable and model RDMs for the extraneous variables above were used
as independent variables in a multiple regression, which included a con-
stant regressor. In a second stage regression, the residual variance from
the first stage was used as the dependent variable and the latent reward
RDM (transformed into a vector and z-scored) was used as the inde-
pendent variable. This resulted in a time course of regression coefficients
(b s) for latent reward coding that did not reflect a linear influence of the
extraneous variables above. The analysis procedure was repeated for trial
positions 2 and 3. The procedure was the same when distance-to-goal
was the variable of interest, except that the distance-to-goal model RDM
was used as the independent variable during the second stage regression
and the latent reward model RDM was included as an extraneous vari-
able in the first stage regression. Like the cross-validated decoding analy-
sis, latent reward coding was only tested for trial positions 2 and 3
because latent reward and starting value were indistinguishable for trial
position 1. Statistical assessment of the decoding strength was tested in
the same way as cross-validated decoding analyses. b Coefficients for
the variable of interest were averaged over the decision phase (0–800
ms).

Spatial RSA. Having identified distance-to-goal encoding at trial
position 2, we performed an exploratory analysis to test whether this in-
formation was encoded in a specific subset of electrodes. To do so, we
repeated the distance-to-goal coding RSA analysis three times, once
using a subset of 18 frontal electrodes (F7, F5, F3, F1, Fz, F2, F4, F6, F8,
FT7, FC5, FC3, FC1, FCz, FC2, FC4, FC6, FT8), once using a subset of
18 central electrodes (T7, C5, C3, C1, Cz, C2, C4, C6, T8, TP7, CP5,
CP3, CP1, CPz, CP2, CP4, CP6, TP8), and once using a subset of 17 pos-
terior electrodes (P7, P5, P3, P1, Pz, P2, P4, P6, P8, PO7, PO3, POz,
PO4, PO8, O1, Oz, O2).

Relationships between task performance and neural coding
Models of selection timing. To provide broad insights about the cog-

nitive strategy used to guide selection behavior, we performed an explor-
atory cross-validated model fitting analysis. The aim of this analysis was
to arbitrate between high-level explanations for participants’ bias to
select early on long trial runs. We reasoned that early selection could
arise for two broad reasons. First, participants could assign a subjective
cost to the number of steps waited, which would reduce the maximum
reward that could be gained on a trial run. This lower subjective maxi-
mum would be reached sooner than the true maximum and thereby
result in earlier selection. Second, participants could have a biased repre-
sentation of the starting value or growth rate, either of which would
result in an inaccurate estimate of the latent reward on each trial. Such a
bias would have a compounding effect on the latent reward estimate,
resulting in more inaccurate reward estimates as more trials are waited.
This in turn would result in an increasing bias to select early as the opti-
mal selection time increased.

To test these broad accounts, we created a series of different mod-
els. Each model was based on the fact that the task’s reward dynam-
ics followed the equation: r ¼ s1gðt � 1Þ, where r is the reward, g is
the growth rate and t is the current trial within the run. This meant
that the optimal trial on which to select the option, t�, could be

expressed as: t� ¼ rmax � s
g

1 1, where rmax is 500 points. To create

the cost of waiting model, we added a hyperbolic delay discounting
factor to the maximum reward (see van den Bos and McClure, 2013)

resulting in:
rmax

½11w t� � 1ð Þ� ¼ s1gðt� � 1Þ, where w is a free parame-

ter for the cost of waiting. This equation can in turn be rearranged
into the form: gwn21 g1swð Þn1 s� rmaxð Þ ¼ 0, where n = t�- 1. The
equation can then be solved for n using the quadratic formula:

n ¼
� g1swð Þ6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðg1swÞ2 � 4gwðs� rmaxÞ

q

2gw
, after which t� is calcu-

lated as t�= n1 1. The biased starting value model was formulated

as:t� ¼ rmax � sb

g
1 1, where b is a free parameter for the starting

value bias. The biased growth rate bias model was formulated

as:t� ¼ rmax � s
gb

1 1, where b is a free parameter for the growth rate

bias. An exponential bias was used in these models, as opposed to a
multiplicative or additive bias, to account for the nonlinear bias
observed in empirical selection times (Fig. 1G). We also created
models with each pairwise combination of the free parameters (wait
cost, starting bias, growth bias) and one model with all three free
parameters.

The performance of each model was evaluated in a cross-validation
procedure. For each participant, data were randomly divided into 10
folds. On each iteration of the analysis, one fold was held out as test data
and the remaining folds were used as training data. The best fitting val-
ues of the free parameter/s in a model were selected by minimizing the
sum of the squared error. The minimum and maximum possible param-
eter values for the waiting cost parameter were constrained to 0 and
130. For the starting value and growth rate bias parameters, these were
0 and 15. The best fitting parameter values were then used in each
model equation, to predict the trials waited until a selection response
was made in each of the held-out test runs. The model predictions were
rounded up to the nearest integer to account for trials being discrete
units. The model was then scored for that test fold by calculating
the mean squared error (MSE) between the predicted trials waited and
the actual trials waited. This process was repeated until each model had
a MSE score for each test fold. The procedure was repeated 50 times
with random subsamples of trials in each fold to ensure stable results.
Within each subsample, the different models were trained and tested on
the same trials to provide a fair comparison of performance. Scores were
then averaged across the test folds and the subsamples. For each partici-
pant, we next calculated the difference in MSE between each model and
the cost of waiting model. Once we had an MSE difference score for
each model for each participant, we calculated bootstrapped 95% confi-
dence intervals for the mean difference in MSE. The differences in MSE
were assessed using Bayesian paired t tests, to quantify the strength of
evidence that the wait cost model had lower error than the other models.
When examining the predictions of the three best models against the
optimal selection model (Fig. 4A–C), we added 1 to both the predicted
number of trials waited and the actual number of trials waited, thereby
examining the model and participant data in terms of the trial on which
the option was selected.

Relationship between neural coding and model parameters. The
model parameters for the cost of waiting model were averaged over the
test folds. These values were then entered into a series of Spearman cor-
relations with the decoding strength of different task variables, taken
from the cross-validated decoding analyses described above. These task
variables included the decoding strength, averaged over the decision
phase (0–800 ms), for the starting value on trial 1, growth rate on trial 1,
distance-to-goal on trial 2 and latent reward on trial 2. The task variables
also included the decoding strength, averaged over the response phase
(1050–2000 ms), for the distance-to-select and wait versus select decod-
ing. The a threshold was adjusted for six exploratory tests using the BH
correction (Holm, 1979). Correlations between these model parameters
and the neural data could potentially provide converging evidence for a
cost of waiting account. Specifically, we reasoned that if the cost of wait-
ing parameters reflected a subjective waiting cost, they should correlate
with a decision variable needed to evaluate when a select response
should be made, such as distance-to-goal information. To validate the
correlation results in a model-free manner, we repeated the correlations
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but substituted the cost of waiting parameter for each participant with
their average action bias (the average number of trials earlier participants
selected the option than the optimal linear model).

Diversity statement
Here, we report the predicted gender and ethnicity of authors in our ref-
erence list (Ambekar et al., 2009; Sood and Laohaprapanon, 2018;
Bertolero et al., 2020; Dworkin et al., 2020; Zhou et al., 2020). First, we
obtained the predicted gender of the first and last author of each refer-
ence by using databases that store the probability of a first name being
carried by a woman. By this measure (and excluding self-citations to the
first and last authors of our current paper), our references contain 2.5%
woman(first)/woman(last), 12.5% man/woman, 25% woman/man, and
60% man/man. This method is limited in that (1) names, pronouns, and
social media profiles used to construct the databases may not, in every
case, be indicative of gender identity and (2) it cannot account for inter-
sex, nonbinary, or transgender people. Second, we obtained the pre-
dicted ethnicity of the first and last author of each reference by databases
that store the probability of a first and last name being carried by an
author of color. By this measure (and excluding self-citations), our refer-
ences contain 4.29% author of color(first)/author of color(last), 13.76%
white author/author of color, 23.11% author of color/white author, and
58.84% white author/white author. This method is limited in that (1)
names and Florida Voter Data to make the predictions may not be indic-
ative of ethnicity, and (2) it cannot account for Indigenous and mixed-
race authors, or those who may face differential biases because of the
ambiguous ethnicization of their names.

Results
To investigate whether decisions about when to select an option
arise from latent reward or distance-to-goal tracking, 32 partici-
pants completed a wait-select task (Fig. 1). On each trial run, par-
ticipants were presented with one of 40 specific options, defined
by a combination of one of eight possible starting values and one
of five growth rates. These properties were signaled using a trian-
gular wedge shown on screen, the size of which indicated the
starting value and the color of which indicated the growth rate.
On each individual trial within a run, participants decided
between waiting and selecting the option. When deciding to
wait, the option’s reward increased based on its growth rate, to-
ward a maximum of 500 points. Participants then moved to the
next trial, making another wait-select decision. The unique start-
ing value and growth rate combinations meant that different
options reached the 500-point maximum after a different num-
ber of wait decisions. Once the reward maximum had been
reached, continued wait decisions produced an exponential
decline in the option’s reward value, forcing participants to care-
fully time each select decision to gain the maximum number of
points. The timing for optimal selection could range from 3 to 16
trials into the run (mean=8, SD= 3) and the run could last for a
maximum of 16 trials. Critically, the visual appearance of the
option on the screen remained the same throughout the trial
run, despite changes in its underlying reward value following
each wait decision. This meant that participants could not use
sensory information to guide decision-making after the first trial,
and instead needed to use latent information that had been com-
puted internally, such as the option’s latent reward prospect.
When deciding to select the option, participants earned its latent
reward and the trial run ended.

Participants had experience with options before starting the
experiment, to learn the correspondence between growth rates
and wedge colors. Participants were also told about the 500-point
reward maximum, and asked to select an option when the maxi-
mum was reached. Each participant completed 240 trial runs in
the main task, averaging 1660 individual wait-select decisions

(SD= 126). 61-channel EEGs recorded during decisions were
used to conduct a series of cross-validated decoding and multi-
stage RSAs, to assess latent reward and distance-to-goal tracking,
in the lead-up to option selection. The orthogonal manipulation
of starting value and growth rate in the task made it possible to
dissociate an option’s latent reward from potentially confound-
ing variables in the neural analyses, such as how many trials had
passed since the beginning of a run and how many trials
remained until an option reached its maximum.

Decisions to select were influenced by starting value and
growth rate
To assess participant choices, we ran a regression that tested
whether the number of trials waited before selecting the option
was influenced by starting value and growth rate (Fig. 1D). The
analysis revealed that select decisions showed significant sensitiv-
ity to both starting value (mean b = �0.640, SD=0.101,
p= 8.164–27) and growth rate information (mean b = �0.467,
SD=0.127, p=8.655e-20). The direction of these relationships
indicated higher starting values and growth rates predicted ear-
lier decisions to select. Participants’ selection timing and optimal
selection timing for each starting value-growth rate condition is
visualized in Figures 1E,F. To summarize, our behavioral results
indicate participant choices were influenced by the reward struc-
ture of the task.

Decisions were biased toward early selection when options
were slow to reach the maximum value
Participants showed a bias to select options earlier than would be
optimal for reward maximization, especially in conditions which
took longest to reach maximum value (Fig. 1G,H). To explore
this effect, we ran a regression that examined whether the bias to
select early grew as optimal selection times increased. This con-
firmed that participants tended to show a larger bias to select
early when an option required more trials to reach the maximum
value of 500 points (mean b = 0.440, SD=0.193, BH corrected
p= 2.753e-13, correction applied for the six exploratory tests in
this section). The bias to select early on slow trial runs resulted in
a loss in points compared with the optimal selection timing. The
reward loss could be predicted from the optimal selection times
(mean b =0.271, SD=0.131, BH corrected p=2.284e-12), indi-
cating larger reward losses for items that were slower to reach
the maximum value. The optimal selection times, used as the in-
dependent measure in these regressions, were a function of an
option’s starting value and growth rate. We therefore ran follow-
up regressions, testing whether starting value and growth rate
both influenced the suboptimality measures. This was the case
for the action bias (starting value b = �0.288, SD=0.151, BH
corrected p= 1.523e-11; growth rate b = �0.274, SD= 0.175, BH
corrected p=1.024e-9) and the reward loss (starting value b =
�0.265, SD=0.099 BH corrected p=4e-15; growth rate b =
�0.115, SD=0.109, BH corrected p=1.520e-6), indicating deci-
sions were more suboptimal for options with lower starting val-
ues and growth rates.

Starting value and growth rate were encoded in neural
activity patterns
Having established that participant choices were sensitive to the
reward structure of the task, we performed a series of decoding
analyses to test whether task information was encoded in pat-
terns of neural activity. Unless otherwise specified, decoding was
conducted on the first three trials in a run, where almost all start-
ing-value/growth-rate combinations (39/40) had not yet resulted
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in a decision to select under the optimal timing. The analyses bal-
anced the number of trials from each condition when training
the decoder and used repeated subsampling to ensure stability of
the results (see Materials and Methods). We first found that in-
formation related to the starting value of the choice item (the
wedge size) could be decoded during the decision phase (0–800
ms following trial onset) during the first three trials within the
trial run (Fig. 2A). Starting value decoding was numerically high-
est on the first trial within a run (mean b =0.018, SD=0.020,
t(31) = 5.107, BH corrected p=4.739e-5) and decreased on the
second (mean b =0.010, SD= 0.013, t(31) = 4.412, BH corrected
p=2.998e-4) and third trials with the run (b mean=0.008,
SD=0.019, t(31) = 2.304, BH corrected p= 0.028). Despite this
numerical reduction, we did not detect significant differences in
the decoding strength for starting value related information
between trial positions 1 and 2 (t(31) = 1.685, BH corrected
p=0.240), positions 1 and 3 (t(31) = 1.809, BH corrected p= 0.240
or positions 2 and 3 (t(31) = 0.727, BH corrected p= 0.472).
When visualizing the full-time course from 0 to 2000 ms dur-
ing the first trial (Fig. 2B), where starting value decoding
was numerically strongest, we detected starting value infor-
mation across most of the trial, from early in the decision
phase into the response phase (window tested = 0–2000 ms,
first significant cluster window = 148–1108 ms, cluster cor-
rected p = 3e-04; second cluster window = 1140–1364 ms,
cluster corrected p = 0.042; third cluster window = 1680–
2000 ms, cluster corrected p = 0.035). It is important to note
that because starting value is coupled to the wedge size,
these decoding results could reflect a combination of start-
ing value and perceptual factors like shape and contrast,
particularly in the early stimulus-evoked period of the trial
(;100 ms). It is equally important to note that separating
these factors is not critical for the present study, in which
the main aim was to decode latent reward information over
time, while dissociating latent reward information from
other task factors.

Unlike starting value, which was coupled to the wedge size,
each growth rate corresponded to two wedge colors per partici-
pant. This meant we could use cross-decoding to dissociate
growth rate encoding from perceptually-evoked responses by
training the decoder on one color set and testing it on the second
color set. Neural encoding of abstract growth rate information,
independent of stimulus color, was present during the decision
phase on the first trial within a run (mean b =0.011, SD=0.016,
t(31) = 3.701, BH corrected p= 0.003; Fig. 2C). Significant growth
rate encoding was not detected on the second (mean b =0.001,
SD=0.019, t(31) = 0.375, BH corrected p. 0.99) or third trial
within a run (mean b =0.001, SD=0.022, t(31) = 0.284, BH cor-
rected p. 0.99). We observed a numerical reduction in decoding
strength following trial position 1, reflecting a strong trend to-
ward reduced growth rate decoding between trial positions 1 and
2 (t(31) = 2.484, BH corrected p=0.056) and positions 1 and 3
(t(31) = 2.382, BH corrected p= 0.056). No significant difference
in growth rate decoding was observed between positions 2 and 3
(t(31) = 0.027, BH corrected p= 0.979). Visualizing the full-time
course from 0 to 2000 ms during the first trial (Fig. 2D), growth
rate decoding was evident from midway through the decision
phase to the beginning of the response phase (window
tested= 0–2000 ms, cluster window=320–1096 ms, cluster cor-
rected p= 9e-4).

To summarize, information related to an option’s starting
value (the wedge size) and abstract information about its growth
rate were encoded in patterns of neural activity as participants

performed the task. In addition, these task variables were most
prominent numerically on the first trial within each trial run.

Latent reward information was initially decodable from
neural activity patterns
So far, we have verified that the main task variables were encoded
on the first trial of each run. However, either variable on its own
is insufficient for participants to solve the task. Starting value and
growth rate need to be integrated to determine when an option
has reached its peak reward. We therefore investigated whether
latent decision variables, which were purely internal and could
be used to guide selection timing, were encoded in neural activ-
ity. One such variable is the option’s latent reward value, which
changed from trial to trial, and could be internally tracked to-
ward its maximum using starting value and growth rate informa-
tion (and elapsed time). On the first trial in the run, the latent
reward was equivalent to starting value. We therefore focused on
trials 2 and 3, separating trials into 50-point latent reward bins
for cross-validated decoding (see Materials and Methods, Latent
variables). Latent reward information was detected on the second
trial within the run (mean b = 0.009, SD=0.015, t(31) = 3.551,
BH corrected p=0.003; Fig. 2E). Latent reward showed a signifi-
cant decrease in decoding strength between trials 2 and 3 (t(31) =
2.111, p=0.043), with no significant latent reward information
detected on trial 3 (mean b = 6.560e-6, SD= 0.016, t(31) = 0.002,
BH corrected p= 0.998). When examining the full-time course
during trial 2, where latent reward decoding was strongest, we
observed a significant cluster at the start of the decision phase
(window tested= 0–2000 ms, first cluster window=296–548 ms,
cluster corrected p= 0.0232; second cluster window=684–932,
cluster corrected p=0.031; third cluster window=1284–1648
ms, cluster corrected p= 0.009; Fig. 2F). To summarize, we found
initial evidence that latent reward information could be decoded
as early as the second trial.

Distance-to-goal information was initially decodable from
neural activity patterns
Another latent variable that could be used to guide selection
behavior is the number of trials until the maximum number of
points is reached, a variable we call the distance-to-goal.
Distance-to-goal information could not be detected on the first
trial in the run (mean b =7.586e-4, SD= 0.020, t(31) = 0.213, BH
corrected p= 0.833; Fig. 2G). Following trial 1, we observed a sig-
nificant increase in distance-to-goal encoding (t(31) = �3.524,
BH corrected p=0.004), with significant distance-to-goal infor-
mation overall on trial 2 (mean b =0.014, SD= 0.020, t(31) =
3.829, BH corrected p=0.002). This distance-to-goal information
was encoded transiently, as indicated by a significant decrease
between trials 2 and 3 within the run (t(31) = 2.389, BH cor-
rected p= 0.046), with no detectable distance-to-goal informa-
tion on trial 3 (mean b = 0.003, SD= 0.019, t(31) = 0.967, BH
corrected p= 0.682). No significant difference between trials 1
and 3 was detected (t(31) = �0.502, BH corrected p= 0.619).
When examining the full-time course during the second trial
(Fig. 2H), where distance-to-goal coding was present, distance-
to-goal information was represented during most of the trial,
from the decision phase into the response phase (window
tested = 0–2000 ms, cluster window= 292–1728 ms, cluster cor-
rected p= 1e-4). To summarize, we found that information
about when to select the option for maximum reward could be
initially decoded on the second trial within a run, after informa-
tion about the starting value and growth rate had been encoded
on trial 1.
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Figure 2. Neural decoding of presented and latent variables. A, Average decoding strength for starting value information (wedge size) during the decision phase (0–800 ms), on the first
three trials within a run. B, Time course for starting value decoding for the first trial within a run (0–2000 ms from trial onset). C, D, Abstract growth rate decoding, independent of stimulus
color due to cross-decoding across color sets. C, Average decoding strength for abstract growth rate information during the decision phase (0–800 ms), on the first three trials within a run. D,
Time course for abstract growth rate decoding on the first trial within a run (0–2000 ms from trial onset). E, Average decoding strength for latent reward, which is the starting value plus the
product of growth rate � trials waited so far in the run. This is shown during the decision phase (0–800 ms) on the second and third trials in a run. Latent reward is not shown on trial 1
because it would be equivalent to starting value. F, Time course for latent reward decoding on the second trial within a run (0–2000 ms). G, Average decoding strength for distance-to-goal in-
formation (i.e., the number of trials from the current trial to the optimal selection trial) during the decision phase (0–800 ms), for the first three trials within a run. H, Time course for dis-
tance-to-goal decoding on the second trial within a run (0–2000 ms from trial onset). I–L, Multistage RSA of latent task variables. The cross-validated decoding in panels A–H does not control
for the influence of other task variables, which could drive the decoding results. The multistage RSA in I–L regresses out neural activity related to other task variables, before decoding the vari-
able of interest. This provides a measure of latent variable decoding, independent from other task variables. The pattern alignment measure refers to how much the neural dissimilarity matrix
can be predicted from a model dissimilarity matrix that contains expected condition differences. I, J, Pattern alignment for latent reward encoding after starting value (wedge size), growth
rate (color), and distance-to-goal have been regressed out of the neural dissimilarity matrix obtained from the EEG signal. I, Average pattern alignment for latent reward encoding during the
decision phase (0–800 ms) for the second and third trials within a trial run. J, Pattern alignment time course for latent reward encoding on the second trial within a run (0–2000 ms). K, L,
Pattern alignment for goal distance encoding when starting value, growth rate and latent reward have been regressed out of the EEG signal. K, Average pattern alignment for distance-to-goal
during the decision phase (0–800 ms), for the first three trials within a run. L, Pattern alignment time course for distance-to-goal encoding on the second trial within a run (0–2000 ms). A, C,
E, G, I, K, The lower middle and upper horizontal bars within each box indicate the 25th percentile, the median, and the 75th percentile, respectively. Colored circles within each box show the
mean across participants, and vertical lines extending from these circles show the SEM. Vertical whiskers extending from each box indicate the most extreme upper and lower values within 1.5
times the interquartile range. Values outside this were deemed outliers and are indicated with a 1 symbol. Asterisk symbols above each condition indicate decoding coefficients are signifi-
cantly different from zero at ***p, 0.001, **p, 0.01, *p, 0.05. Asterisk symbols above a bar that bridges two conditions indicate a significant difference between conditions at
***p, 0.001, **p, 0.01, *p, 0.05. Asterisk symbols are based on Bonferroni-Holm (BH) corrected p-values. B, D, F, H, J, L, Vertical lines show onset of the decision phase, delay, and
response phase, respectively. Shading in the decoding time courses show the SEM. Solid colored lines under time courses indicate when significant decoding is observed (cluster corrected
p-values, 0.05).
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Latent reward could not be decoded when controlling for
other task variables
While latent reward and distance-to-goal information could be
decoded in the separate analyses above, these variables were cor-
related because higher latent rewards meant participants were
closer to the optimal trial to select (mean Spearman’s Rho =
�0.851 for behavioral data on trial position 2). This means that
the decoding analyses above could be sensitive to the same
underlying information. To dissociate latent reward and dis-
tance-to-goal information, we performed multistage RSA. The
logic behind this analysis was to first regress out multivariate ac-
tivity related to extraneous task variables and then test whether
information about a variable of interest could still be decoded
from the neural signal (see Materials and Methods). This
approach has the benefit of being able to use exact latent reward
values rather than bins, using pairwise differences between con-
dition labels as regressors in a multivariate regression. The corre-
lation between latent reward and distance-to-goal information
used in the analysis was reduced in the RSA setup (mean
Spearman’s Rho= 0.546 on trial 2). The sign flip in this correla-
tion, compared with the raw behavioral correlation above, is
because of the use of RDMs in the analysis. The RDMs capture
absolute pairwise differences in condition values. The sign flip
occurs because the behavioral values are negatively related, but
the pairwise differences in values end up being positively related.
This means that two trials with a bigger difference in latent
reward also tend to have a bigger difference in their distance-to-
goal values. When controlling for the possible influence of start-
ing value, growth rate and distance-to-goal using multistage
RSA, latent reward information could not be detected on trial 2
(mean b = �0.001, SD=0.006, t(31) = �1.239, BH corrected
p=0.449; Fig. 2I) or trial 3 (mean b = 4.170e-4, SD=0.014, t(31)
= 0.175, BH corrected p=0.862). There was no significant differ-
ence in latent reward decoding between trials 2 and 3 (t(31) =
�0.584, p= 0.563). When examining the full-time course on trial
2 (Fig. 2J), this control analysis did not detect any significant
decoding clusters (window tested = 0–2000 ms, strongest
candidate cluster = 660–716 ms, cluster corrected p = 0.238).
This did not change when latent reward was tested in a sin-
gle-stage RSA, in which starting value, growth rate, dis-
tance-to-goal and latent reward were included as predictors
in the same RSA step (window tested = 0–2000 ms, strongest
candidate cluster = 660–716 ms, cluster corrected p = 0.226).
To summarize, we found that when accounting for other
task variables, latent reward information could no longer be
decoded on trial 2 within the run.

Distance-to-goal could be decoded when controlling for
other task variables
By contrast, when controlling for the possible influence of start-
ing value, growth rate, and latent reward, the multistage RSA did
replicate the cross-validated decoding of distance-to-goal (Fig.
2K). As with the decoding analysis, no distance-to-goal informa-
tion was detected during the decision phase on the first trial
within the run (mean b = �0.010, SD=0.034, t(31) = �1.683,
BH corrected p= 0.205). On the second trial, however, distance-
to-goal information that was independent from starting value,
growth rate, and latent reward, could be detected (mean
b = 0.013, SD= 0.025, t(31) = 2.919, BH corrected p=0.019). This
information was transient, with no significant distance-to-goal
information detected on trial 3 (mean b = �8.393e-4,
SD=0.032, t(31) = �0.151, BH corrected p= 0.881). The dis-
tance-to-goal encoding seen on trial 2 was significantly higher

than on trial 1 (t(31) = �3.290, BH corrected p=0.008), but no
significant differences were detected between trials 1 and 3 (t(31)
= �1.180, BH corrected p=0.247) or trials 2 and 3 (t(31) = 1.752,
BH corrected p= 0.179). When examining the full-time course
on trial 2 (Fig. 2L), we detected significant distance-to-goal cod-
ing that began in the decision phase and extended into the delay
phase (window tested= 0–2000 ms, cluster window=388–900
ms, cluster corrected p= 0.012). This was also the case when dis-
tance-to-goal was tested in a single-stage RSA, in which starting
value, growth rate, latent reward, and distance-to-goal were
included as predictors in the same RSA step (window tested=
0–2000 ms, cluster window=396–900 ms, cluster corrected
p= 0.011). To understand more about the distance-to-goal signal
on trial 2, we performed two exploratory analyses. First, we ran
the analysis separately for trials with high (200–350) and low (0–
150) starting values. This indicated that the effect was primarily
(although not exclusively) due to trials that involved low starting
values (window tested = 0–2000 ms, largest candidate
cluster = 628–780 ms, cluster corrected p= 0.078), rather than
high starting values (window tested = 0–2000 ms, no candidate
clusters). No significant differences were detected between the
high and low starting value time courses (window tested= 0–
2000 ms, strongest candidate cluster = 256–296 ms, cluster cor-
rected p=0.335). Second, we examined whether the signal was
encoded in a specific subset of electrodes. To do so, we ran the
analysis separately using 18 frontal electrodes, 18 central electro-
des and 17 posterior electrodes. Distance-to-goal coding was
found to be strongest when the analysis was restricted to the pos-
terior electrodes (window tested= 0–2000 ms, cluster
window=200–1148 ms, corrected p=1e-3; central electrodes:
strongest candidate cluster = 492–528 ms, corrected p=0.339;
frontal electrodes: no candidate clusters). To summarize, dis-
tance-to-goal information, unlike latent reward, was encoded in
neural activity even when information about other task variables
was removed from the signal.

Information about empirical selection timing was encoded in
patterns of neural activity
So far, we have shown that, early within the trial run, participants
encoded information about when an option ought to be selected
in the future. This distance-to-goal signal was encoded transi-
ently on trial 2 but could not be decoded on the following trial.
We speculated that this could arise if the neural response to a
given condition starts out as a faithful reflection of the optimal
distance to reach the maximum number of points. But since par-
ticipants’ actual choices were suboptimal (Fig. 1G–I), their selec-
tion plan might progressively reflect their actual selection timing
rather than optimal selection timing, especially on trial runs that
involve longer optimal wait times. In this scenario, decoding the
actual selection behavior might still be possible on later trials
leading up to the choice. We therefore tested whether partici-
pants monitored the number of trials until their actual selection
response, a variable we call the distance-to-select. This is distinct
from the distance-to-goal because it represents when people
made their actual selection response, rather than the optimal
response for a given condition, and therefore accounts for
suboptimal choice behavior. To maximize power, these
cross-validated decoding analyses pooled data from trial
positions 3–6, using balanced trial numbers from each, and
tested whether participants were 1, 2, or 3 trials away from
making a select response.

Distance-to-select information was encoded across trial posi-
tions 3–6 (Fig. 3A), with a time course that gradually ramped up
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from the decision phase to the response phase (window
tested = 0–2000 ms, cluster window = 472–2000, cluster cor-
rected p, 1e-4). RTs were stable from trials 2–10 before a
select response (F(8,248) = 0.388, p = 0.926, one-way repeated
measures ANOVA), but showed significant slowing on the
trial before selecting (mean RT on distance 1 trials = 452
ms, SD = 93 vs mean distance 2 = 435 ms, SD = 92, t(31) =
3.720, BH corrected p = 0.002; mean distance 1 vs mean dis-
tance 3 = 432 ms, SD = 92, t(31) = 3.958, BH corrected
p = 0.001; mean distance 2 vs mean distance 3, t(31) = 1.477,
BH corrected p = 0.150). However, the neural effect re-
ported here was not due to differences in RTs between the
selection distances because the procedure subsampled trials
to ensure there were no significant differences in RTs across
conditions that could bias the decoder. As would be
expected when balancing condition RTs at the participant
level, RTs from subsampled trials also showed no significant
differences at the group level. Specifically, no significant differ-
ences were detected between selection distances of 1
(mean= 487 ms, SD= 102) and 2 (mean= 486 ms, SD= 102;
t(31) = 1.021, BH corrected p= 0.532), 1 and 3 (mean= 485,
SD= 104; t(31) = 1.763, BH corrected p= 0.263), as well as 2
and 3 (t(31) = 1.133, BH corrected p= 0.532). The only other
neural analysis that could, in principle, have been affected by
slower RTs on the trial before a select response was the dis-
tance-to-goal RSA analysis (Fig. 2L). However, significant dis-
tance-to-goal encoding was still seen on trial 2, even when trials
immediately preceding a select response were excluded from
the analysis (window tested = 0–2000 ms, cluster window=
564–876 ms, cluster corrected p= 0.029). In addition to the RT
controls, the distance-to-select effect (Fig. 3A) was not because
of differences in the number of left and right button presses
between conditions. A control analysis that additionally
matched the number of left and right responses showed the
same results (window tested = 0–2000 ms, cluster window=
476–2000 ms, cluster corrected p, 1e-4). To test whether the
effect could be driven by the trial before the select response
being distinct from all other trials, we repeated the analysis, but only
included trials with a distance-to-select of 2 or 3. This confirmed
that distance-to-select information was encoded prior to the trial
before option selection (window tested=0–2000 ms, first cluster
window=212–456, cluster corrected p=0.040, second cluster

window=1216–1452 ms, cluster corrected p=0.040, third cluster
window=1616–2000 ms, cluster corrected p=0.012).

These results suggest that participants performed a mental
countdown to time their selection response. However, an alter-
native explanation could be that participants were counting
down the number of points until the reward maximum was
reached. This alternative would be consistent with latent reward
tracking. To test this possibility, we ran a decoding analysis that
examined whether participants were representing the difference
in current reward and reward they would get on selecting the
option (the reward-to-select). The reward-to-select values were
divided into 50-point bins starting from 0 and reward-to-select
bins of 1–3 were used for the analysis (0–150 points away from
the select response). We did not detect significant reward-to-
select information during trial positions 3–6 (window tested= 0–
2000 ms, strongest candidate cluster = 44–64 ms, cluster cor-
rected p=0.597; Fig. 3B). Having shown participants encoded
the trials until their select response, we examined whether deci-
sions to select were neurally distinct from decisions to wait
(distance-to-select 0 vs 1). This revealed a strong select signal
that began in the decision phase and became more distinct dur-
ing the response phase (window tested = 0–2000 ms, cluster
window=192–2000 ms, cluster corrected p, 1e-4).

To summarize, we found evidence indicating that participants
tracked the number of trials until their upcoming select response
and that this result was not explained through latent reward
monitoring.

Relationship between neural activity and the timing of
option selection
So far, our neural decoding results point toward a time-oriented
task strategy, in which participants evaluated when an option
would become most valuable in the future and represented the
number of time steps until their upcoming select decision. To
understand the relationship between the neural coding results
and the timing of option selection, we therefore sought to under-
stand more about the strong bias to select options earlier than
would be optimal, when options were slow to reach their maxi-
mum value (Fig. 1G,H). We reasoned that this action bias could
emerge for two distinct reasons. One reason would be that par-
ticipants discounted an option’s maximum reward based on the
number of trials that would need to be waited. This would result

Figure 3. Neural decoding of empirical selection timing. A, Decoding time course for the number of wait trials until a select response is made (the distance-to-select). B, Decoding time
course for the difference between the options current latent reward and its latent reward when selected (the reward-to-select). C, Decoding time course for the decision to select versus the de-
cision to wait on the previous trial. A–C, Vertical lines show onset of the decision phase, delay, and response phase, respectively. Shading around the principal line in the decoding time courses
show the SEM. Solid colored lines under time courses indicate when significant decoding is observed (cluster corrected p-values, 0.05).
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in earlier selection because the lower subjective maximum
would be reached sooner than the true maximum. A second
reason would be that an option’s starting value or growth
rate was misrepresented as being higher than its actual
value. This would result in earlier selection because the
latent reward estimate would become systematically higher
than its true value with longer trial runs. When comparing
the cross-validated performance between models that could
potentially account for the action bias (Fig. 4D; see
Materials and Methods), we found that the model discounting an
option’s maximum reward with a waiting cost made more accurate
predictions about selection timing than models including a biased
representation of the starting value (average difference in MSE =
�2.011; CIs = [�2.687�1.483], BF10 = 6.131e4), a biased represen-
tation of the growth rate (average difference in MSE = �0.164, CIs
= [�0.277 �0.079], BF10 = 12.854) or both (average difference in
MSE = �0.1341, CIs = [�2.498e5 �2.430e5], BF10 = 5.740). We
also found the cost of waiting model did not reliably make
more accurate predictions when additional free parameters
were added to it, including a bias in the starting value (aver-
age difference in MSE = 0.015, CIs = [�0.039 0.068], BF10 =
0.215), a bias in the growth rate (average difference in MSE
= �0.007, CIs = [�0.047 0.038], BF10 = 0.197) or both (aver-
age difference in MSE = 0.030, CIs = [�269.353 �259.400],
BF10 = 0.242).

The cost of waiting model contained a single free parameter
that reflected how much participants discounted an option’s
reward prospect for the time that would need to be waited. A
larger cost of waiting parameter meant that participants showed
a stronger bias to select options early on slow trial runs. When
comparing participants’ best fitting wait cost parameter with
their neural data, we found a significant positive relationship
between distance-to-goal encoding over the decision phase (0–
800 ms) in the second trial in the run and the cost of waiting pa-
rameter (Spearman’s Rho= 0.526, BH corrected p=0.014; Fig.
4E), indicating that better distance-to-goal encoding was associ-
ated with a larger bias to switch early on slow trials. No correla-
tions were detected between the cost of waiting parameter and
the neural encoding of other task variables, including the starting
value on trial 1 (Spearman’s Rho = �0.200, BH corrected
p= 0.624), growth rate on trial 1 (Spearman’s Rho = �0.110, BH
corrected p=0.549), latent reward on trial 2 (Spearman’s
Rho= 0.341, BH corrected p= 0.227), distance-to-select across
trials 3–6 (Spearman’s Rho = �0.228, BH corrected p=0.624)
and select versus wait responses across trials 3–6 (Spearman’s
Rho =�0.368, BH corrected p= 0.194). To validate these correla-
tion results in a model-free manner, we examined the relation-
ship between the action bias (the behavioral bias to select earlier
than the optimal selection trial) and neural encoding of distance-
to-goal. Consistent with the results above, we found a significant

Figure 4. A–C, Top three performing models of selection timing. A, A cost of waiting model, which includes a reward cost proportional to the number of steps waited. B, A model that
includes a cost of waiting as well as biased representations of the starting value and growth rate. C, A model that includes a cost of waiting and a biased representation of the growth rate.
A–C, Each plot shows the number of trials participants waited before selecting the option (purple line) as a function of the optimal number of trials to wait before selecting the option. The
black diagonal provides a reference line for an optimal agent. The remaining colored line shows the cross-validated performance of the model fit to participant data. Shading around each col-
ored line shows the SEM. D, The difference in mean squared error (MSE) between a given model and the cost of waiting model. More negative values indicate worse model performance, rela-
tive to the cost of waiting model. The y-axis shows each model being compared with the costs of waiting model. The x-axis shows the difference in MSE. Mean differences across the sample
are shown with dots enclosed in a black circle and 95% confidence intervals are shown with black lines extending from the sample means. MSE differences for individual participants are shown
for the top competitor models as colored dots and the remaining competitor models as gray dots. E, Correlation between the average distance-to-goal coding during the decision phase (0–
800 ms) and the cost of waiting parameter estimates. Black lines indicate linear fits to the data and gray lines indicate 95% confidence intervals of the fits.
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relationship between the action bias and distance-to-goal encod-
ing (Spearman’s Rho= 0.471, BH corrected p=0.039) but not the
remaining neural variables (maximum Spearman’s Rho = 0.373,
BH Corrected p = 0.177).

Discussion
The present study examined how people decide when to select a
specific option as its reward changed reliably over time, in the
absence of direct sensory cues to indicate its changing value. We
hypothesized that an option’s starting value and growth rate
could be used to track the option’s latent reward over time,
allowing the option to be selected when its reward reached a cer-
tain threshold. We assessed whether this strategy could in princi-
ple be dissociated from an alternate strategy that might lead to
similar neural responses, namely determining the optimal selec-
tion time at the beginning of a trial run and waiting for this time
point to occur, without continuously updating a latent reward
estimate. While starting value and growth rate were strong pre-
dictors of when an option would be selected, we did not find
neural evidence consistent with latent reward tracking in the
present experiment. Instead, we found neural evidence that peo-
ple encoded option properties and used this information to eval-
uate when an option would reach its maximum value, far in
advance of selecting it. This distance-to-goal information was
present in the data even when controlling for the option’s latent
reward but not vice versa. Following the distance-to-goal signal
encoded early in a trial run (on trial 2), we observed patterns of
neural activity indicating how many steps into the future the
option would actually be selected (on trials 3–6). These results
provide evidence that even strategies that lead to very similar
predictions about neural activity can be dissociated using RSA.
In the present study, people appeared to decide when to select
the option in advance and monitored the time until their selec-
tion response, as opposed to actively tracking the option’s chang-
ing reward prospect. Computational modeling further showed
that selection behavior could be captured with a temporal dis-
counting model, which discounted an option’s maximum reward
based on the time needed for its maximum to be reached. The
core parameter in this model showed a positive correlation with
the neural encoding of distance-to-goal information.

The present results add to recent studies examining when a spe-
cific option should be selected (Stoll et al., 2016; Khalighinejad et al.,
2020a,b). Research by Khalighinejad et al. (2020a,b) showed that
recent task history is integrated with on-going sensory evidence
about an option’s reward, to determine when it will be selected. Our
results suggest that when on-going sensory evidence is unavailable
and reward increases at a predictable rate, temporal predictions
about when an option will become most valuable can be used to
determine selection timing, circumventing the need to integrate
changing reward information. The present results also build on
findings from Stoll and colleagues (Stoll et al., 2016), who found a
transient signal in the cingulate cortex encoding latent information
about an option’s progress to a reward threshold. While Stoll et al.’s
(2016) results raise the possibility that an option’s latent reward
could be tracked over time to guide select decisions, we did not find
evidence for latent reward tracking. There could be at least four
explanations for this difference. First, while Stoll et al. (2016) used
options with different growth rates, allowing latent reward progress
and distance-to-goal to be dissociated in principle, the analysis did
not explicitly dissociate the two factors. The transient signal
observed in Stoll et al. (2016) could therefore reflect, in part, dis-
tance-to-goal information, signaling how soon an option would

reach the reward threshold. In our particular case, the neural data
were initially consistent with both kinds of timing information,
requiring careful dissociation to identify the latent information
being used. Future studies could take this insight into account and
use dissociation procedures, such as the one in this experiment, to
understand the precise mechanism guiding selection behavior.
Second, while we used a multistage RSA procedure to dissociate the
two factors, the variables were still closely related. This could have
meant that latent reward was encoded in the neural signal but could
not be detected after a large amount of correlated variance, which
could also be captured with distance-to-goal, was removed. To
decorrelate the two variables, future designs could control changes
in latent reward using a step-function, as this would allow distance-
to-goal to decrease with each successive trial, while latent reward is
held constant for multiple trials before increasing to the next reward
step. Third, our task continued to present the starting value on each
trial, which could have created interference with latent reward
updating and made this variable more difficult to decode. Future
designs could therefore consider showing starting value on the first
trial, and presenting elapsed timesteps thereafter to demarcate
changes from one trial to the next. Fourth, different environmental
constraints could promote different cognitive strategies. In Stoll et
al. (2016), macaques did not know how long it would take for the
option to reach the reward threshold when beginning a trial run
and could check the option during the run to gain information. In
our study, participants had all the information needed to determine
when an option would become most valuable at the start of a run,
which could have encouraged the use of distance-to-goal as a proxy
for changing reward values. Distance-to-goal tracking might there-
fore be considered the more computationally efficient solution for
the current task, in which changes in reward followed a predictable
trajectory during each run. One implication is that the task structure
could have allowed participants to circumvent a more demanding
latent reward tracking process, which might be used in more com-
plex settings. Future studies could use the analysis approach
adopted here to investigate this idea and test whether latent reward
tracking might be favored when changes in reward are less reliable.
For example, options that change growth rate at unpredictable times
during a trial run could make it more difficult to use distance-to-
goal information, which would need to be recomputed after each
change in the growth rate. The two tracking strategies could also be
assessed behaviorally in future studies, by introducing probe ques-
tions at random timesteps during the run that ask participants to
report the option’s current reward or the number of steps until its
maximum. The latent reward account would predict that partici-
pants can report the option’s current reward with greater accuracy
than the distance-to-goal. The distance-to-goal account would pre-
dict that participants can report the distance-to-goal with greater ac-
curacy than the option’s current reward.

One interesting aspect of the results was that distance-to-goal
information was detected transiently, appearing on trial 2 but
not on trial 1 or 3. One speculative reason for this could be that
most participants computed distance-to-goal information on
trial 1 but at variable times across trial runs and across partici-
pants, making the decoding noisier. It could also be that trial 1
was noisier in general as participants settled into the run, lowering
the overall decoding accuracy for distance-to-goal compared with
trial 2. An alternative possibility could be that participants waited
until trial 2 to compute the distance-to-goal because options in the
task never reached the 500-point maximum before trial 3 and, thus,
this information was not needed to make wait-select decisions on
trials 1 and 2. On trial 3, distance-to-goal could have become more
difficult to decode because of increasing variability in the encoding,
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as participants switched from thinking about the optimal selection
timing to when they would actually select the option. While the dis-
tance-to-select decoding seen on trials 3–6 provides some evidence
toward this, the reason distance-to-goal coding was so transient
remains elusive. For example, it could also be that decoding became
more difficult on trial 3 because of a general increase in recording
noise further into a trial run, as participants became more dis-
tracted. Exploratory analyses, following up the primary effects,
showed that the distance-to-goal signal on trial 2 was numerically
stronger for options involving lower starting values. Such options
had higher goal distances on average and thus stronger coding
could be because of lower starting values, higher goal distances, or a
combination. The distance-to-goal signal on trial 2 was also strong-
est in the posterior electrodes. This exploratory result might provide
an interesting spatial marker of distance-to-goal information, to
examine in future studies. While it is challenging to draw inferences
about underlying neural sources based onM/EEG channels because
of the inverse problem (Baillet and Garnero, 1997), one speculation
that could be tested with more spatially specific methods would be
that the posterior profile seen here reflects timing signals arising
from parietal cortex. Previous studies have implicated parietal cor-
tex as a critical region in action timing, based on findings that neu-
ronal firing rates in the lateral intraparietal sulcus are modulated by
the wait time before a motor response (Jazayeri and Shadlen, 2015).
Specifically, neurons in this region gradually ramp up activity to-
ward a fixed response threshold, with slower ramping as wait inter-
vals become longer. These findings suggest that neurons within
parietal cortex are sensitive to both the prospective wait duration
and elapsed time (Jazayeri and Shadlen, 2015; for review, see Paton
and Buonomano, 2018), making it a possible candidate region for
encoding temporal variables in the present task. Future studies
could therefore use more spatially specific methods to test whether
distance-to-goal information is encoded in parietal cortex, as
opposed or in addition to other brain regions implicated in selecting
timing, such as the basal ganglia (Khalighinejad et al., 2020a,b) and
dorsal anterior cingulate cortex (Stoll et al., 2016).

In addition to the neural results, we found a strong behavioral
bias to select early, when options were slow to reach their maxi-
mum reward. While unanticipated, this result is consistent with
findings showing humans and macaques do not wait for options
to reach their full expected value before selecting them
(Khalighinejad et al., 2020a,b), and that the probability of making
a select response in general increases over trials in sequential
tasks (Baumann et al., 2020). Our computational modeling
results suggest that the bias could be explained by a temporal dis-
counting process, in which an option’s subjective value was
reduced with increasing wait times (see van den Bos and
McClure, 2013), rather than a biased representation of task varia-
bles that lead to inaccurate reward estimates. One aspect the
modeling results do not clearly delineate is whether discounting
occurred at the start of a trial run, when an option was first being
evaluated, or whether it built up during the run, because of a
declining ratio between the maximum reward and the cognitive
effort involved in waiting longer (see Shenhav et al., 2016; Kool
and Botvinick, 2018; Yee and Braver, 2018; Westbrook et al.,
2020; Frömer et al., 2021). A final interesting aspect was that par-
ticipants with stronger distance-to-goal encoding tended to show
a stronger action bias, suggesting that those with more accurate
predictions about peak reward timing selected slow options ear-
lier. One speculative reason could be that this behavior is benefi-
cial in real-world environments, where decisions to select low
reward rate options prematurely give decision makers more time
to encounter and exploit more valuable options. This proposal is

consistent with findings that human choices to abandon options
are sensitive to opportunity costs (Constantino and Daw, 2015)
and that people show reduced cognitive control performance
when opportunity costs are high (Otto and Daw, 2019).

To conclude, we found that when option rewards followed
reliable trajectories and there were no direct sensory changes to
indicate changes in reward, people encoded the time when
options would become most valuable in the future and moni-
tored the number of actions until the point of selection. In con-
trast, we did not find evidence for independent neural coding of
an option’s latent reward over time. These results suggest that, in
structured environments where timing provides a useful proxy
for changing reward, the human brain uses time-oriented encod-
ing to make decisions about when to select an option. At a
broader level, the approaches used in this experiment could be
useful for dissociating how closely related variables impact neural
activity during decision-making.
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