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ABSTRACT
Eating disorders (EDs) are characterised by intense concerns about food and weight. These 
concerns are linked to changes in decision-making, such as persisting with actions that 
are no longer rewarding. For example, individuals might engage in long exercise sessions 
or time-consuming body checking practices, despite limited benefits. This study tested 
whether people with subclinical ED symptoms show increased persistence due to altered 
decision-making processes. Specifically, we postulated a shift in internal thresholds for 
making different decisions in EDs, which change the balance between exploitation and 
exploration. A subclinical group with heightened concerns about eating (sED; N = 44) and a 
healthy control group (HC; N = 56) completed a foraging task, in which an option on screen 
was exploited for reward. With each decision to exploit, reward feedback decreased and 
participants had to decide when to move on to a new option. Each block was time limited 
to 7.5 minutes. Behavioural persistence was measured as the number of seconds spent 
exploiting each option. Decision thresholds were measured when deciding to move on, 
as the counterfactual reward that would have been received for an exploit action. We 
predicted that the sED group would show increased persistence and decreased decision 
thresholds (i.e. lower counterfactual reward when deciding to move on) in comparison to 
the HC group. We found no evidence for these predictions. Instead, exploratory analyses 
showed that the sED group exhibited progressively faster response times (RTs) when 
approaching the time limit for each block. This increase in motor vigour was correlated 
with the severity of eating disorder symptoms from a range of traditional diagnostic 
categories. Our results point to changing motor vigour as a potential transdiagnostic 
marker of ED tendencies.
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INTRODUCTION
Eating disorders (EDs) encompass a range of heterogeneous conditions, including anorexia 
nervosa (AN), bulimia nervosa and binge eating disorder (American Psychiatric Association, 2013). 
The behavioural symptoms often associated with these conditions, such as preoccupation with 
food and weight, are also common in the general population (Abdulkadir, et al., 2022; Romano et 
al., 2022). It is no surprise that these concerns can influence food-related choices. For example, 
people with acute AN have been shown to choose high fat foods significantly less than people 
who are otherwise healthy (Foerde et al., 2015), a pattern of decision-making that persists even 
after weight has been restored (Foerde et al., 2021). An intriguing observation from ED studies, 
particularly those focused on restrictive EDs, is that decisions seemingly unrelated to food can 
be affected too (Bernardoni et al., 2018; Bernardoni et al., 2021; Chan et al., 2014; Decker et al., 
2015; Foerde et al., 2021; Guillaume et al., 2015; Jenkinson et al., 2023; Onysk & Seriès, 2022; Pike 
et al., 2023; Steinglass et al., 2006; Steinglass et al., 2012; Steinglass et al., 2017; Radzikowska et 
al., 2025; Schuman et al., 2025; Verharen et al., 2019). For example, individuals with AN perform 
worse in probabilistic choice tasks that use neutral stimuli than matched controls (Chan et al., 
2014; Verharen et al., 2019), and individuals with subclinical AN symptoms are more willing to pick 
delayed monetary rewards over immediate ones (Schuman et al., 2025). Observations along these 
lines suggest that general-purpose decision mechanisms may be altered in restrictive EDs, at least 
for certain classes of decisions and/or at certain stages of illness.

Most studies to date on cognition in restrictive EDs have focused on a specific class of decision 
problem, in which individuals make independent choices between simultaneously presented 
options (Bernardoni et al., 2018; Bernardoni et al., 2021; Chan et al., 2014; Decker et al., 2015; 
Foerde et al., 2015; Pike et al., 2023; Rouhani et al., 2025; Steinglass et al., 2006; Steinglass et al., 
2012; Steinglass et al., 2017; Schuman et al., 2025; Verharen et al., 2019). Examples include the 
food choice task, where people choose between pairs of food items (Foerde et al., 2015; Foerde 
et al., 2018) and reinforcement learning tasks where people choose between pairs of abstract 
stimuli (Bernardoni et al., 2018; Bernardoni et al., 2021; Pike et al., 2023). In cases like these, a 
key property is choice independence: one’s actions in the current trial do not influence what is 
shown on the next trial. While there is substantial evidence that responses to independent choice 
problems are altered in restrictive EDs (Bernardoni et al., 2018; Bernardoni et al., 2021; Chan et 
al., 2014; Decker et al., 2015; Foerde et al., 2015; Pike et al., 2023; Rouhani et al., 2025; Steinglass 
et al., 2006; Steinglass et al., 2012; Steinglass et al., 2017; Schuman et al., 2025; Verharen et al., 
2019), there is a growing interest in choice problems that have sequential dependence, where the 
actions taken influence the subsequent decisions one is faced with (Foerde et al., 2021; Jenkinson 
et al., 2023; Onysk & Seriès, 2022).

To illustrate why this is relevant to the study of restrictive EDs, imagine making a decision about 
how long to continue exercising before stopping, or whether to continue fasting when initial 
feelings of hunger arise. Decisions in these cases exhibit sequential dependence. If you decide to 
keep exercising, you will be faced with a similar choice later on. In such cases, one intuition is that 
someone with restrictive eating tendencies may be motivated to persist for longer than the general 
population, exercising for longer before stopping or fasting for longer before eating. Indeed, current 
evidence suggests that exercise duration increases with restrictive eating symptoms (Rizk et al., 
2015) and individuals with AN continue using decision rules once they become irrelevant, longer 
than healthy controls do (Filoteo et al., 2014; Steinglass et al., 2006; Wu et al., 2014). One hypothesis 
that emerges from these findings is that people with restrictive EDs struggle to disengage from 
actions or activities, even when it would be beneficial. This could potentially contribute to a range 
of behaviours, including longer exercise sessions in individuals with AN (Rizk et al., 2015), more time 
washing and getting dressed in AN compared to other EDs (St-Pierre et al., 2023), time-consuming 
body checking practices that can occur in AN or atypical AN (Harrop et al., 2023), and meal skipping 
in subclinical individuals at risk of developing an ED (Kabakuş Aykut & Bilici, 2022).

Computational studies of restrictive EDs suggest that difficulties adapting behaviour when needed 
could arise from a combination of reduced exploratory behaviour and increased perseveration 
(Filoteo et al., 2014). Reduced risk aversion could also contribute in certain cases, increasing 
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persistence when actions lead to illness-consistent outcomes (Jenkinson et al., 2023). In addition 
to these changes, decision-making in AN and subclinical EDs becomes less model-based (Foerde 
et al., 2021; Onysk & Seriès, 2022), a form of behavioural control that normally supports flexible 
adjustment to changing circumstances (Voon et al., 2017). Based on current evidence, there are 
several candidate mechanisms that could contribute to maladaptive persistence in restrictive EDs.

One theoretical possibility that has not been considered is an altered threshold for adapting 
behaviour. This idea is formalised in Optimal Foraging Theory (OFT; Stephens & Krebs, 1986). OFT 
was originally developed to understand how animals search for food in natural environments 
(Calhoun & Hayden, 2015; Hayden & Walton, 2014; Mobbs et al., 2018), but has since been adopted 
to understand how people make decisions (Bustamante et al., 2023; Constantino and Daw, 2015; 
Hall-McMaster et al., 2021; Harhen & Bornstein, 2023; Kolling et al., 2012; Le Heron et al., 2020; 
Wilke et al., 2009; Razza et al., 2025; Wittmann et al., 2016). A central dilemma considered in 
OFT is patch-leaving, in which one must decide when to leave an option with diminishing returns 
(Stephens & Krebs, 1986; Stephens, 2008). Patch-leaving has conceptual links to the explore-
exploit dilemma (Addicott et al., 2017; Hagan et al., 2024), where it has been proposed that a 
bias to over-exploit could lead to persistent restriction in EDs (Hagan et al., 2024). Under certain 
conditions, the normative solution to the patch-leaving problem is to leave the current option 
when its reward falls below a decision threshold, set to the average environmental reward rate 
(Charnov, 1976; Hayden et al., 2011). This implies that failures to adapt could be due to an 
abnormal decision threshold that is only met after excessive exploitation. In the case of deciding 
how long to exercise, for example, the diminishing returns of continued exercise would have to 
drop to an especially low level before a person decides to stop.

Within psychiatry, OFT has been previously applied in studies of addiction (Addicott et al., 2015; 
Raio et al., 2022). Using patch-leaving tasks, these studies have measured the time spent 
exploiting each option (persistence), reward levels when deciding to leave each option (decision 
thresholds), and how much these quantities deviate from an optimal agent or an empirical control 
group. This approach has been fruitful, revealing altered decision thresholds in opioid addiction 
and gambling addiction respectively (Addicott et al., 2015; Raio et al., 2022). So far, OFT has not 
been used to examine failures to adapt in individuals with restrictive ED symptoms. Here we 
propose that such failures could arise from altered decision thresholds, a prediction that can 
be tested using patch-leaving. Altered thresholds themselves could stem from altered reward 
learning processes reported in restrictive EDs (e.g. Foerde & Steinglass, 2017; Wierenga et al., 
2021) that lower internal estimates of the average environmental reward rate. This possibility 
can be assessed with reinforcement learning models, which are often used to understand latent 
processes that contribute to foraging behaviour (Constantino & Daw, 2015; Frankenhuis et al., 
2019; Hall-McMaster & Luyckx, 2019; Kolling & Akam, 2017; Wittmann et al., 2016).

Based on research suggesting maladaptive persistence in restrictive EDs (Filoteo et al., 2014; 
Steinglass et al., 2006; Wu et al., 2014; Rizk et al., 2015), the present experiment aimed to test 
whether individuals with restrictive ED tendencies show increased persistence due to altered 
decision thresholds for adapting their behaviour. Based on Optimal Foraging Theory, we predicted 
this would be seen in a computerised foraging task as: 1) more time spent exploiting each option 
before deciding to disengage from it (increased persistence) in comparison to HCs and 2) continuing 
to exploit options to lower levels of reward before disengaging (a decreased decision threshold) in 
comparison to HCs. The experiment was conducted using a subclinical online sample, with dieting 
and oral control subscales of the Eating Attitudes Test (EAT-26; Gardner et al., 1982; Berland et al., 
1986) being used as indicators of restrictive ED tendencies.

METHODS
PARTICIPANTS

The final sample had a 44 participant subclinical ED (sED) group (mean age = 25, mean years of 
education = 16, mean BMI = 22.04, 40 female, 4 male), and a 56 participant control group (mean 
age = 27, mean years of education = 17, mean BMI = 22.74, 45 female, 11 male). Participants were 
separated into groups based on scores from the EAT-26 (Garner et al., 1982), where higher scores 
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indicate greater concerns about eating. Those in the sED group had scores of 20 or higher (mean 
= 36.05), whereas those in the control group had scores below 10 (mean = 3.13). The sED cutoff of 
20 was based on the EAT-26 scoring rubric, which proposes that a score ≥ 20 indicates a “high level 
of concern about dieting, body weight, or problematic eating behaviours”. Individuals with scores ≥ 
20 score are recommended to “seek an evaluation by a qualified health professional” to determine 
if their score “reflects a problem that warrants clinical attention” (Garner et al. 1982). The cutoff 
for the control group was from Onysk & Seriès (2022). Eleven people in the sED group indicated 
they had a formal ED diagnosis, compared with zero individuals in the control group (six individuals 
across both groups chose not to report this information). Participants were fluent in English and 
did not report using medication for a neurological or psychiatric condition. Height, weight, age, 
gender and years of education were self-reported. Participants received £10.10 for completing the 
full experiment, as well as a bonus of up to £2 based on performance in the decision task. Baseline 
compensation was distributed across the experimental stages as: £0.6 for the prescreening, £4 for 
the bigger questionnaire battery, and £5.50 for the decision task. The study was approved by the 
ethics committee at the Max Planck Institute for Human Development (i2023-03) and participants 
gave informed consent before taking part.

MATERIALS

Participants completed a series of questionnaires about eating attitudes and mental health. These 
included the EAT-26 (Garner et al., 1982), Eating Disorder Examination Questionnaire (EDE-Q; 
Fairburn & Beglin, 2008), Appearance Anxiety Inventory (AAI; Veale et al., 2014), Clinical Impairment 
Assessment (CIA; Bohn & Fairburn, 2008), State-Trait Anxiety Inventory (STAI; Spielberger, 1983), 
Beck Depression Inventory (BDI-II; Beck et al., 1996), Intolerance for Uncertainty Scale (IUS; full 
version; Buhr & Dugas, 2002), and the Obsessive-Compulsive Inventory (OCI-R; revised version; 
Foa et al., 2002). Questionnaires were presented in Limesurvey (https://www.limesurvey.org/). 
Participants also completed a cognitive task, built in Psychopy-3 (https://www.psychopy.org; Peirce 
et al., 2019) and hosted on Pavlovia (https://pavlovia.org/). The task included two cartoon stimuli 
that were created by icon developers Smalllikeart and Nikita Golubev (accessed from https://www.
flaticon.com). Arrows in Figure 1 were created by Atif Arshad (accessed from https://www.flaticon.
com). Participants were recruited for the experiment using Prolific (https://www.prolific.co/) and 
tested online. Analyses were conducted in Python3.

PROCEDURE

The final sample was reached using a three-step procedure. In the first step, prospective 
participants completed the EAT-26. Following Onysk and Seriès (2022), Prolific’s prescreening tools 
were used to distribute the EAT-26 to relevant participants. For the sED group, invitations were 
sent to people who reported: 1) going on a diet in the past; 2) restricting their food intake for the 
last week or longer, to lose or maintain weight; and 3) a BMI below 20. The mean BMI for the 
eventual sED sample was 22.04, higher than the information provided by Prolific. Although Prolific’s 
prescreening tools were used to distribute the EAT-26 to participants with BMIs < 20, we calculated 
BMIs based on self-reported height and weight from the experiment itself (shown in Table 1 and 
Table S1). This did not affect group inclusion, which was determined using EAT-26 scores. For the 
HC group, invitations were the sent to people who reported: 1) not having been on a diet before; 
2) not restricting food intake to manage weight in the last week; 3) a BMI below 24.9; and 4) not 
having a diagnosed mental health condition with an ongoing or daily impact. Participants from 
both groups also needed to be 18–40 years old, fluent in English and have normal or corrected-to-
normal vision. 518 individuals completed the initial screening session.

In the second step, people with EAT-26 scores ≥ 20 or less than 10 were invited to complete 
the full questionnaire battery, listed in the materials section. Questionnaires were presented in a 
random order. 120 individuals completed the full questionnaire set, with an average completion 
time of 17.5 minutes. At this stage, we excluded participants who reported taking medication for 
low mood, anxiety or depression (N = 6). We also remeasured EAT-26 scores. Individuals from the 
HC group with EAT-26 scores above 10, and individuals from the sED group with EAT-26 scores 
below 20, were excluded (N = 14).

https://www.limesurvey.org/
https://www.psychopy.org
https://pavlovia.org/
https://www.flaticon.com
https://www.flaticon.com
https://www.flaticon.com
https://www.flaticon.com
https://www.prolific.co/
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In the final step, participants who completed the questionnaires and met all inclusion criteria 
(N = 100) were invited to a decision-making task. To test our experimental predictions, we used 
a custom patch-leaving task, based on Optimal Foraging Theory (Stephens & Krebs, 1986). The 
general structure of a patch-leaving task is that participants are presented with an option (a 
“patch”) that can be exploited for reward. With each round of exploitation, the reward gained 
from the patch decreases. In light of these declining returns, participants must decide how long 
to exploit the current patch before switching to a new one that might be better. The particular 
patch-leaving design used in this experiment combined elements from Constantino and Daw 
(2015) and Hall-McMaster et al. (2021). Participants controlled a pirate ship sailing to different 
islands in search of buried treasure. Each block started with a time delay as participants sailed to 
the first island. After arriving, participants needed to press the spacebar to dig for treasure. This 
revealed the number of gold medallions added to their treasure chest. Feedback was shown for 
1.5s and then disappeared from the screen. Once the feedback disappeared, participants could 
choose to dig again (spacebar) or set sail from the island (‘s’ key). No time limit was imposed for 
responses during the task. If the participant chose to dig again, more medallions were added to 
their treasure chest but it was less than the previous dig. Participants were repeatedly presented 
with a choice between digging or leaving the current island, until a leave decision was recorded. 
Once the participant chose to leave, there was a time delay while sailing to the next island. This 
structure continued for 7.5 minutes at which point the block ended. Throughout the block, the 
time remaining was shown in the top right corner of the screen.

Reward dynamics in the task were controlled using precise mathematical functions. When first 
arriving at each island, the reward received for the first dig was drawn from a Gaussian distribution 
with a mean of 100 and a standard deviation of 10. For each subsequent dig on the island, the 
reward received was the reward from the previous trial multiplied by a decay constant, k:

–1Reward = Reward *t t tk

The decay constant used on each trial, t, was drawn from a Gaussian distribution with a block 
specific mean and a standard deviation of 0.07. If the value drawn on a trial was above 1, k was set 
to 1. Participants completed four blocks in total. Across blocks, we manipulated two factors known 
to influence optimal leaving times: decay rate and travel time. Slow reward decay within patches 
and short travel time between them reduce the optimal patch residence time (see Constantino & 
Daw, 2015). In the present experiment, the mean decay constant used in each block was either 
0.81 (fast decay) or 0.91 (slow decay). The travel time in each block was either 9s (long travel 
time) or 2.5s (short travel time). These values were selected on the basis of simulations (Figure S3). 
Each simulation computed the total reward per block for leaving each patch after a fixed number 
of actions. Simulations assumed a mean reaction time of 1 second. This allowed us to estimate 
optimal patch residence times (number of actions per patch) for different decay rate and travel 
time combinations. We then selected combinations for the experiment that were expected to 
produce a smooth increase in optimal residence times. One decay/travel time combination was 
used per block. The block order was randomised for each participant and participants did not have 
direct experience with the islands or the reward dynamics before starting the first block.

STATISTICAL ANALYSES

Data were analysed using appropriate generalised linear models (GLMs), as implemented 
in glmmTMB (Brooks et al., 2017) and lme4 (Bates et al., 2015) packages. Data-appropriate 
distributions were selected for each analysis: reaction times and leaving times were analysed using 
Gamma response distributions, while patch actions (discrete positive numbers) were analysed using 
Poisson regression. All GLMs used a log link function. Reward data were analysed using a GLM with 
Gaussian likelihood and identity link function. All models included a random intercept for participant 
and random slopes for within-subject factors (decay condition, travel time condition). This was 
determined by estimated models for all combinations of random slopes and selecting the one with 
lowest Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) scores (the two 
metrics were in agreement in all cases). Statistical significance for each GLM was assessed using the 
type II Wald X2 test (using the car package; Fox and Weisberg, 2019). Post-hoc analyses including 
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marginal means and slopes estimation were performed using the modelbased (Makowski et al., 
2020) and emmeans (Lenth, 2020) packages. Holm correction was applied to all post-hoc tests to 
control for multiple comparisons (Holm, 1979). For analyses focusing on RT acceleration, the slope 
of the change in RT over time was estimated using appropriate GLMs. For example, the following 
Gamma GLM with a log link function was used to extract remaining-time slopes for each block:

( ). : ~ _ _ 1 _ _ | /**Eq RT decay fac travel time group decay fac travel time block id+ + + + remaining_time

This approach removes any fixed effects from the data as well as within-subject variability 
associated with decay and travel time conditions, isolating the remaining time variable for each 
block.

COMPUTATIONAL MODELLING

Decisions about whether to exploit or leave a patch were modelled using an approach from 
Constantino & Daw (2015). Specifically, the model computed the probability of exploiting the 
current patch at decision t using a logistic decision rule:

( )( )–1

1
( ) =  

1 +  – + –  
t

t t

P exploit
exp c r Tβ  

The core aspect of the expression above is the term rt–1 – Tt which compares rt–1, the last reward 
received from the current patch, to the current leaving threshold of the model, Tt. The parameter 
c is an intercept that estimates how much people tend to over or under exploit the current patch 
relative to the reward rate. β is a parameter that controls the slope of the logistic function, reflecting 
participants’ sensitivity to the difference between the leaving threshold and the expected reward 
for exploiting. The leaving threshold, T, was set based on the estimated reward rate for the 
environment. This estimate was akin to a weighted reward average across all patch decisions in a 
block up to that point. It was updated following each exploit decision using a simple delta learning 
rule with a learning rate (α):

, , –1 , –1=   ( ˆ )ˆ ˆ  –E t E t t E tr r r rα+

Given participants received no immediate reward for decisions to leave a patch, , Ê tr  was updated 
with rewards of 0 following each leave decision. Since reward and no reward might influence 
participants’ estimate of the reward rate to different extents, we allowed the model to have 
separate learning rates for rewarded and unrewarded updates (α and α1).

The estimated reward rate for the environment, , Ê tr , was used directly as the leaving threshold:

,ˆ=t E tT r

The model had 4 free parameters in total, α, αl, β and c. The parameters were fit for each participant 
using a scatter-based optimisation solver in MATLAB (version R2021a). The constant, c, was 
constrained between –50 and +50, the parameter β was constrained between 0 and +2 and learning 
rates were constrained between 0 and +1. The estimated reward rate was initialised at 50 at the start 
of each block. For each trial, the exploit probability was calculated using the logistic decision equation 
above. One exception to this was on the first decision when arriving at a patch, where participants 
were forced to exploit and the exploit probability was set to 1–(1e–5), without using the logistic choice 
equation. On all trials, exploit probabilities were constrained to a maximum value of 1–(1e–5) and 
a minimum value of 1e–5. The leave probability was calculated as 1–p(exploit). The probability of 
the choice made on the current trial was stored. The negative log of the choice probabilities were 
summed to get the negative log likelihood of the model given the data. Model parameters were 
selected on the basis of minimising the negative log likelihood. Reward rate estimates and latent 
choice parameters were compared between sED and HC groups using two-tailed independent t-tests.

FACTOR ANALYSIS

The collected questionnaires (EAT-26, EDE-Q, AAI, CIA, IUS, OCI-R, BDI, STAI-T) were subjected 
to exploratory factor analysis using oblique rotation (psych::fa(); Revelle, 2023). The number of 
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factors was identified at three using the Cattel’s criterion (Cattell, Nelson & Gorsuch, 1967; Cattell-
Nelson-Gorsuch test) at three.

DATA AND CODE AVAILABILITY

Raw as well as preprocessed data are available in the associated github repository: https://github.
com/ozika/ed-foraging-mcmaster-and-zika.

RESULTS
To investigate whether individuals with restrictive eating symptoms persist with actions for longer 
before stopping, we ran a multi-stage online experiment (Figure 1A). Each stage was conducted 
as a separate online session. In the first stage, prospective participants completed the Eating 
Attitudes Test (EAT-26; Garner et al., 1982), where higher scores indicate greater concerns about 
eating. Individuals with scores 20 or above were included in a subclinical ‘eating disorder’ (sED) 
group and individuals with scores below 10 were included in a ‘healthy control’ (HC) group. People 
in the sED group did not necessarily have a diagnosed eating disorder and we use this label purely 
to distinguish the participant group with higher concerns about eating.

In the second stage of the experiment, participants completed a more extensive questionnaire 
set that again measured eating attitudes, but additionally measured body image, anxiety 
and depression, sensitivity towards uncertainty and obsessive-compulsive tendencies. The 
questionnaires used are listed in the methods section under materials.

In the third stage of the experiment, participants completed a decision task (Figure 1B). The task 
was themed as a treasure collection game, in which participants controlled a pirate ship and sailed 
to different islands to search for buried treasure. On each island, participants could select between 
two actions: digging for treasure (an exploit decision) and leaving the island (a leave decision). After 
an exploit decision, reward feedback appeared showing the number of gold medallions earned. 
With each successive exploit action, the reward decreased, forcing participants to decide when to 
leave the current island. When a leave decision was finally made, participants experienced a travel 
delay while sailing to the next island. This structure continued for 7.5 minutes, at which point 
the block ended. Participants were shown the remaining block time in the top right corner of the 
screen. Islands are called patches hereafter for consistency with Optimal Foraging Theory.

Figure 1 Experimental stages 
and task design. A: The 
experiment proceeded in 
three main stages. Prospective 
participants were first invited to 
complete the Eating Attitudes 
Test (Garner et al., 1982). 
Participants were sorted based 
on their scores. Those with 
scores of 20 or higher were 
assigned to the subclinical 
eating disorder (sED) group and 
those with scores below 10 
were assigned to the healthy 
control (HC) group. From this 
stage on, the groups proceeded 
in parallel tracks. Participants 
from each group were invited 
to complete a full questionnaire 
set that assessed eating 
behaviours and attitudes, body 
image, anxiety and depression, 
as well as intolerance for 
uncertainty and obsessive-
compulsive tendencies. In the 
final stage, participants were 
invited to complete a decision 
task. B: During the decision task, 
participants sailed to islands to 
dig for buried treasure. Sailing to 
an island involved a 2.5s or 9s 
delay. After arriving, participants 
could choose between an exploit 
action (digging) or leaving to sail 
to a new island. An exploit action 
resulted in reward feedback, 
after which participants faced 
a new decision about whether 
to exploit or leave. With each 
successive exploit action on 
the current island, the reward 
decreased (fast decay rate = 
0.81; slow decay rate = 0.91). 
Across blocks, we manipulated 
the travel time between islands 
and how quickly the reward 
depleted.

https://github.com/ozika/ed-foraging-mcmaster-and-zika
https://github.com/ozika/ed-foraging-mcmaster-and-zika
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Participants completed four blocks in total. Across blocks, we manipulated how quickly rewards 
declined with each successive exploit decision in a patch (the decay rate), and the travel time 
between patches. These manipulations took place in a 2 × 2 factorial design, in which the factors 
were decay rate (fast × slow) and travel time (short × long). Optimal Foraging Theory predicts that 
faster reward decay and shorter travel times should result in earlier leaving times. We used these 
predictions to validate the experimental task. Our primary interest was testing the predictions that 
people with restrictive eating symptoms would spend longer in each patch and exploit patches 
down to lower levels of reward before leaving.

EXPERIMENTAL MANIPULATIONS PRODUCED CHANGES IN LEAVING TIME

We first validated our experimental manipulations. Leaving times are expected to change based 
on how fast patch values decline and the travel time between patches. Patches that decline in 
value faster lead to earlier leaving times, as do shorter travel times between patches. Consistent 
with these expectations, we observed significant main effects of decay rate and travel time on 
the number of seconds participants spent in each patch before leaving (decay: X2 (1, N = 100) 
= 278.09, p < 0.001; travel time: X2 (1, N = 100) = 110.62, p < 0.001). Participants spent fewer 
seconds in each patch when rewards dropped quickly (M = 11s) compared to slowly (M = 17.4s). 
Participants similarly spent fewer seconds in each patch when travel times were short (M = 12.1s) 
compared to long (M = 16.4s). These results confirm that participant behaviour was sensitive to 
the experimental manipulations.

GROUP CHARACTERISTICS

Having validated the experimental task, we examined the characteristics of each participant 
group. The sED and HC groups were comparable in age, BMI, and education. Formal statistics are 
presented in Table 1. Gender counts were not significantly different between groups (X2 (1, N = 100) 
= 0.94, p = 0.331). Mean scores on all questionnaires administered differed between the groups 
(see Table S1). This included significant differences in the dieting and oral control subscales of the 
EAT-26 between groups, which contain items that probe restrictive eating behaviours (Gardner et 
al., 1982; Berland et al., 1986). As multiple questionnaires were used to measure similar constructs 
(e.g. concerns about eating, anxiety), we performed a factor analysis to identify transdiagnostic 
factors spanning across specific measures (Wise et al., 2023). This resulted in three factors: Factor 
1 (F1: Eating attitudes) loaded mainly on questionnaires concerned with eating attitudes and 
appearance anxiety (EAT-26, EDE-Q, AAI). Factor 2 (F2: Uncertainty sensitivity) was characterised 
by questionnaires measuring intolerance to uncertainty and partially by obsessive-compulsive 
tendencies (IUS and OCI-R). Factor 3 (F3: Anxiety and depression) loaded predominantly on trait 
anxiety and depression measures (STAI-T, BDI). Scores on all three factors differed between the 
groups. Formal statistics are presented in Table 1 and full factor loadings and presented in Figure 
S1. These results confirm that the experimental procedure was successful in recruiting two distinct 
participant groups, who differed in their levels of concern about eating and self-reported restrictive 
eating symptoms.

N sED HC

FEMALE MALE FEMALE MALE

40 4 45 11

M SD M SD t df p

Age 25.30 5.52 26.82 6.09 –1.31 95.94 0.193

BMI 22.04 7.95 22.74 5.88 –0.49 76.79 0.624

Education 15.70 2.79 16.73 3.07 –1.74 96.14 0.085

F1: Eating attitudes 1.05 0.61 –0.83 0.46 17.06 78.01 <.001

F2: Uncertainty sensitivity 0.56 0.94 –0.44 1.03 5.052 95.74 <.001

F3: Anxiety & depression 0.43 1.07 –0.33 0.93 3.72 85.59 0.004

Table 1 Group characteristics, 
including demographics and 
factor scores.

BMI = Body Mass Index.

Education refers to years of 
formal education.
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SUBCLINICAL ED AND CONTROL GROUPS SHOWED COMPARABLE LEAVING 
BEHAVIOUR

We next tested our experimental predictions: 1) that the sED group would spend longer in each 
patch before leaving and 2) that the sED group would exploit each patch down to a lower reward 
level before leaving. Contrary to the first prediction, we did not detect a significant main effect of 
group on the number of seconds spent in each patch (MsED = 13.10s, SDsED = 5.14, MHC = 13.72s, SDHC 
= 4.94, X2 (1, N = 100) = 0.65, p = 0.420, Figure 2A). Contrary to the second prediction, we did not 
detect a significant main effect of group on the prospective patch reward, at the time participants 
decided to leave (MsED = 37.75 points, SDsED = 11.87, MHC = 37.82 points, SDHC = 13.96, X2 (1, N = 100) 
= 0.029, p = 0.864, Figure 2B). As patch rewards decline monotonically, the prospective reward 
for exploiting is a good approximation of a patch’s current reward level. The pattern of results 
above did not change when considering more specific interactions. The time in each patch was not 
influenced by an interaction between group and travel time (X2 (1, N = 100) = 1.35, p = 0.246), nor 
by an interaction between group and decay rate (X2 (1, N = 100) = 0.63, p = 0.427). The prospective 
patch reward was not influenced by an interaction between group and travel time (X2 (1, N = 100) 
= 0.68, p = 0.409), nor by an interaction between group and decay rate (X2 (1, N = 100) = 0.017, 
p = 0.895). These results suggest that the sED and control groups showed comparable decisions 
about when to disengage from each option.

SUBCLINICAL ED AND CONTROL GROUPS HAD COMPARABLE CHOICE PARAMETERS

Even in the absence of overt behavioural differences, it is possible the sED and HC groups differed 
in the latent processes underlying their decisions (see Pike et al., 2023). To test this possibility, we 
performed a computational modelling analysis. The analysis modelled decisions to exploit or leave 
a patch based on the Marginal Value Theorem (Charnov, 1976), which compares the instantaneous 
patch reward to the average reward rate for the environment. Following a previous established 
approach (Constantino & Daw, 2015), we assumed that participants formed an internal estimate 
of the average reward rate, based on feedback during the task. The comparison between average 

Figure 2 Theoretical predictions 
and empirical results. A: Patch 
residence time. The left panel 
shows the predicted group 
difference, in which the 
subclinical eating disorder (sED) 
group is expected to spend 
longer in each patch before 
deciding to leave. The middle 
panel shows the expected 
data profile in the case of no 
group difference. The right 
panel shows the empirical 
patch residence time for the 
sED and HC groups. B: Leaving 
threshold. The left panel shows 
the predicted group difference, 
in which the reward prospect 
for an exploit decision is lower 
at the time of leaving for the 
sED group. As patch rewards 
decrease monotonically, the 
reward prospect for exploiting 
is a useful measure of current 
patch value, and thus the 
reward level/threshold at 
which patches are abandoned. 
The middle panel shows the 
expected data profile in the 
case of no group difference. 
The right panel shows the 
empirical leaving threshold for 
the sED and HC groups. A-B: 
Dots show data from individual 
participants.
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reward rate and the instantaneous patch reward was implemented using a logistic choice function. 
The model had four free parameters in total, α, αl, β and c. The parameters α, αl were learning rates 
used to update the estimated reward rate after an exploit decision (α) or a leave decision (αl). 
The parameter β captured participants’ sensitivity to the difference between the reward rate and 
instantaneous patch rewards. The parameter c was a constant that estimated how much people 
tended to over or under exploit the current patch relative to the reward rate. More details about 
the model are presented in the methods. The computational modelling analysis revealed that 
internal reward rate estimates were not significantly different between groups (MsED = 63.82, SDsED 
= 10.52; MHC = 64.97, SDHC = 10.19; t(98) = –0.55, p = 0.583). This suggests that both groups had a 
similar patch leaving threshold. Moreover, best fitting parameters values did not significantly differ 
between groups: α (MsED = 0.13, SDsED = 0.12; MHC = 0.15, SDHC = 0.12; t(98) = –0.70, p = 0.486), αl (MsED 
= 0.02, SDsED = 0.08; MHC = 0.01, SDHC = 0.05; t(98) = 0.68, p = 0.50), β (MsED = 0.20, SDsED = 0.12; MHC = 
0.19, SDHC = 0.09; t(98) = 0.36, p = 0.721), c (MsED = 4.62, SDsED = 6.64; MHC = 4.57, SDHC = 6.00; t(98) 
= 0.04, p = 0.971). These results suggest that latent parameters underpinning patch choices were 
comparable between the sED and control groups.

THE SUBCLINICAL ED GROUP SHOWED INCREASING RESPONSE VIGOUR

Next, we performed a set of exploratory analyses, to ask whether there were alternative markers 
distinguishing the sED and HC groups. Based on previous reports of faster decision-making and 
motor function in AN compared to HCs (King et al., 2016; Pieters et al., 2003), we were motivated 
to examine potential differences in reaction times (RTs). One strong group difference was evident 
in how much participants’ RTs changed as a function of remaining time in each block (total block 
length: 720 sec; visible to participants). We observed a significant interaction between group and 
remaining time in the block on choice RTs (X2(1, N = 100) = 49.50, p < 0.001, Figure 3A). Bootstrapping 
tests indicated this effect was highly robust. When selecting 60–80% of the participants at 
random and re-computing the test statistic across 500 permutations, the bootstrapped 95% 
confidence interval for X2 was [13.85, 70.97]. This means even under conservative assumptions 
of a reduced sample size and the minimum expected test statistic, the interaction between group 
and block time was still highly significant (X2(1, N = 70) = 13.85, p < 0.001, Figure S4). Follow up 
tests comparing the change in RTs between groups revealed that the sED group showed a stronger 
reduction in RTs with increasing block time, compared to the HC group (BHC = –1.91e–04, BsED = 
–5.55e–04, BsED-HC = –3.64e–04, SEM = 5.03e–05, zratio = –7.24, p < 0.001). Providing some intuition, 
the HC group took on average 0.37s to respond at the end of the block compared to 0.42s at the 
beginning of the block, while the sED group took about 0.27s to respond at the end compared to 
0.39s at the beginning (coded as: beginning = 1st–10th remaining time quantile; end = 91st–100th 
remaining time quantile). The difference in RT between HC and sED groups was already significant 
in the first 10% of trials (Welch two sample t-test, t(79) = –2.51, p = 0.014).

To assess whether this effect was specific to eating attitudes, we compared regression models 
that used either the pre-assigned group membership (HC/sED) or the estimated factors F1 (eating 
attitudes), F2 (uncertainty sensitivity) or F3 (anxiety and depression) as the individual difference 
variable. The model that best predicted RTs across time was the model using F1 (eating attitudes), 
which was evident in a lower AICc score (–25282.2) compared to the other models (group: –25272.6, 
F2: –25227.8, F3: –25207.0). This indicates that eating attitudes were the best predictor of the 
decreasing RT effect. This finding was consistent with the X2 values for the interaction of the factor 
scores (F1–3) with remaining time within each model. The F1:remaining-time interaction was 
qualitatively highest (X2(1, N = 100) = 73.38, p < 0.001). The F2 interaction with remaining time 
was also significant but had a qualitatively lower X2 value (X2(1, N = 100) = 18.18, p < 0.001). The 
interaction of remaining time and F3 was not significant (X2(1, N = 100) = 1.66, p = 0.197; Figure 
S2). Spearman correlation results were consistent with this pattern, indicating a robust association 
between higher eating concerns (F1 scores) and RT acceleration, rs(98) = 0.244, p = 0.014 (Figure 3B).

Next, we examined whether the speeding up effect was related to a broad range of ED symptoms, 
or a specific ED subtype. We approached this in two ways. First, we computed individual scores for 
all 100 participants on predefined subscales within each questionnaire (e.g. dieting, bulimia and oral 
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control in the EAT-26) and correlated them with the speeding up effect. Specifically, we calculated 
Spearman correlation coefficients between the distribution of scores for each subscale and the 
corresponding distribution of RT acceleration slopes from the linear mixed effects model. The 
highest correlation coefficients were related to multiple subscales of the ED questionnaires (EAT-
26, EDE-Q, CIA), and the affective subscale of the depression questionnaire BDI (Figure 3D). The ED 
subscales with high, positive correlation coefficients reflected a broad range of ED symptomatology, 
including shape and weight concerns, dieting, oral control, bulimia, as well as social, cognitive and 
personal impairment due to ED behaviours. We then repeated the analysis for each individual item 

Figure 3 Increasing vigour, 
eating attitudes and reward. 
A. Increasing vigour effect by 
group. The sED group (shown in 
maroon) was found to decrease 
their reaction times with the 
approaching end of each block, 
while there was no trend in the 
HC group (shown in blue). The 
thick lines represent posterior 
marginal means with 95% 
confidence intervals. The thin 
lines represent estimates for 
each individual. B. Spearman 
correlation between the 
Eating Attitudes factor and the 
slope of the increasing vigour 
effect. More positive values 
represent higher reduction in 
reaction times towards the 
end of the block. C. Spearman 
correlation between the 
Eating Attitudes factor and the 
amount of reward accumulated 
throughout the task. All panels 
in this plot depict individual 
data for 100 individuals. D. 
Questionnaire subscales and 
their correlation with increasing 
motor vigour under time 
pressure. The y-axis shows the 
magnitude of the correlation 
coefficient. The x-axis shows 
established subscales for each 
questionnaire. Colours denote 
subscales from the same 
questionnaire.
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across all questionnaires. Items from a range of ED questionnaires and symptom dimensions were 
again among the highest correlation coefficients (Figure S5). These results suggest that speeding 
up under time pressure is associated with a broad range of ED symptoms, related to multiple 
traditional diagnostic categories (anorexia, bulimia and binge eating disorder).

In a final set of exploratory analyses, we tested whether group membership and continuous 
restrictive eating symptoms were related to performance. The sED group earned more reward on 
average than HCs (RsED = 44067, RHC = 42530), although this increase was not statistically significant, 
X2(1, N = 100) = 2.03, p = 0.15). When looking at continuous variation in restrictive eating symptoms, 
we did not detect a significant spearman correlation between the F1 factor and overall reward 
(rs(98) = 0.156, p = 0.121; Figure 3C). Together, the results in this section indicate that a robust 
difference between the sED and HC groups was how much their responses accelerated as the time 
in each block decreased. This speeding up under time pressure was not specific to restrictive ED 
symptoms. Instead, it was positively related to a broad range of ED characteristics and symptoms.

DISCUSSION
The present experiment aimed to test the hypothesis that individuals with subclinical restrictive 
eating disorder (sED) tendencies take longer to disengage from actions or activities that are no 
longer rewarding. To measure time until disengagement, we used a theoretical framework called 
Optimal Foraging Theory (Stephens & Krebs, 1986), in which a single option is exploited at a time 
as its reward decreases, and people must decide when to disengage from it. We predicted that 
a subclinical ED group would (1) spend longer exploiting each option and (2) that each option’s 
reward prospect would be lower when deciding to leave, in comparison to healthy controls (HCs). 
Contrary to these predictions, the sED group showed comparable exploitation times and reward 
prospects at the point of leaving. Latent choice variables and parameters were also comparable 
between groups. Unexpectedly, exploratory analyses identified robust group differences in the RT 
domain. RTs for the sED group decreased throughout each block, significantly more than the HC 
group. Follow-up analyses showed that eating attitudes was the strongest predictor of this effect. 
Moreover, eating attitudes reflected a broad range of ED symptoms associated with all three 
traditional diagnostic categories (anorexia, bulimia and binge eating disorder). Increases in motor 
vigour were positively related to multiple ED subscales, including shape and weight concerns, 
dieting, oral control and bulimia, as well as self-reported impairment in social, cognitive and personal 
domains due to ED features. Together, these factors indicate that ED symptoms are associated 
with increasing response vigour under time pressure and that this could be a transdiagnostic 
marker of eating disorders, which includes symptoms from multiple ED subcategories.

Increasing motor vigour in the sED group is consistent with past research reporting faster RTs in 
acute AN, which could indicate more efficient processing (King et al., 2016) or reduced dependence 
on reward that lowers deliberation time and results in more automatic responding (Steinglass & 
Walsh, 2016). The sED group might also have been calibrating motor vigour to maximise reward 
rate (Sukumar et al., 2024; Yoon et al., 2018). This interpretation can be explained with reference to 
Yoon et al. (2018), who demonstrated a normative relationship between motor vigour and reward 
rate during foraging. In their framework, the average reward rate depends on both patch leaving 
times and the vigour with which one moves to the next patch. Hence, motor vigour itself is an 
explicit variable available for optimisation. Travel times between patches were fixed in the present 
experiment. However, high-level principles from Yoon et al. (2018) can be applied: participants could 
increase their reward rate by increasing their motor vigour within patches. Indeed, further analysis 
showed that participants who sped up more within each patch tended to earn higher reward 
overall, rs(98) = 0.243, p = 0.015. Future research could consider utilising additional computational 
frameworks to understand the mechanisms that connect increasing motor vigour and sED 
symptomatology, such as foraging-adapted drift diffusion models (Davidson & El Hady, 2019).

One intriguing aspect of accelerating motor vigour was its transdiagnostic nature. Speeding up 
under time pressure was related to a broad set of eating attitudes (the F1 factor), ED subscales, and 
self-reported impairments due to ED tendencies. Based on this, it is interesting to consider whether 
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there could be a common denominator underpinning this effect. Anxiety disorders commonly co-
occur across multiple ED diagnoses (Swinbourne & Touyz, 2007) and their subclinical counterparts 
(Touchette et al., 2011). One possibility could be that individuals with greater eating concerns were 
more prone to becoming stressed or anxious about the reducing time in each block. One argument 
against this interpretation is that weighted anxiety and depression scores (the F3 factor) were not 
significant predictors of the difference in RT between the groups (Figure S2D). Previous research 
has shown that intolerance for uncertainty and obsessive-compulsive tendencies also tend to be 
elevated in multiple ED diagnoses compared to HCs (Brown et al., 2017; Drakes et al., 2021; Kesby 
et al., 2017). However, correlation coefficients between the speeding up effect and intolerance for 
uncertainty, as well as obsessive-compulsive tendencies, were the among the lowest measured. 
The data from our experiment suggest that speeding up under time pressure was related to a wide 
range of ED symptoms, but did not extend into several domains that can co-occur with EDs, such 
as intolerance for uncertainty or obsessive-compulsive tendencies.

From a broader perspective, a recurring theme in previous studies on restrictive EDs has been 
that cognition and behaviour is rigid and inflexible to change (Filoteo et al., 2014; Steinglass 
et al., 2006; Wu et al., 2014; Rizk et al., 2015). Computational studies have proposed several 
possible mechanisms for this maladaptive persistence, including reduced goal-directed control 
(Foerde et al., 2021; Onysk & Seriès, 2022), reduced risk aversion in disorder-relevant contexts 
(Jenkinson et al., 2023), as well as reduced exploratory behaviour and increased perseveration 
(Filoteo et al., 2014). A recent study by Pike et al. (2023) suggests the picture is more nuanced, 
demonstrating more flexible adjustments in learning rate between task environments in women 
who had recovered from AN. The present results provide a second example of an ED-related group 
exhibiting more flexible adjustments in behaviour than controls. These recent examples highlight 
potential domains of increased flexibility for future research on restrictive EDs.

We predicted that individuals with restrictive ED symptoms would show increased persistence and 
reduced decision thresholds in a neutral patch-leaving task, compared to HCs. However, we did not 
see evidence for these predictions. One possible reason could be the abstract decision task used, 
which was not specific to EDs. This is relevant because past research indicates that, although some 
cognitive changes in restrictive EDs can be detected in abstract settings (e.g. Foerde et al., 2021), 
other changes are visible in disorder-relevant settings (Jenkinson et al., 2023; Onysk & Seriès, 
2022). In addition, there is good reason to be critical about the hypothesis that individuals with 
restrictive eating disorders are more persistent in general, without considering how persistence 
is regulated in different contexts. When eating, for example, individuals with AN clearly do not 
persist in their consumption, with reduced calorie intake and a slower eating rate (Sysko et al., 
2005), although mealtimes themselves can be longer due to more non-ingestive behaviours, 
such as moving food around (Tappe et al., 1998). The implication is that our data do not preclude 
changes in an internal threshold for behavioural adaptation in restrictive EDs, in contexts where 
decisions are relevant to ED symptoms (such as choice contexts involving food, exercise or body 
image). Future research could therefore examine the predictions from this experiment in a task 
adapted to EDs, with the predicted direction of changes in decision threshold set on the basis of 
relevant symptoms. Another possible reason for not detecting differences in persistence or decision 
thresholds in this experiment could be the sample tested. The predictions for this experiment were 
primarily motivated on the basis of studies indicating maladaptive persistence in individuals with 
acute AN or individuals who had recovered from AN (Filoteo et al., 2014; Steinglass et al., 2006; Wu 
et al., 2014; Rizk et al., 2015). The intensity and variability of symptoms in our subclinical sample 
was plausibly different from these formal clinical groups. It is therefore possible that the predicted 
effects might still be observed in restrictive ED patients with a formal diagnosis.

To conclude, the present experiment did not find evidence for a change in the decision threshold 
used to adapt behaviour in restrictive EDs. These findings do not rule out a change in decision 
threshold in contexts relevant to ED symptoms, such as food, exercise and body image. The 
findings neither rule out such a change in individuals with a formal restrictive ED diagnosis. Overall, 
this experiment showed that subclinical individuals with heightened ED concerns showed a robust 
increase in motor vigour over time that was higher than HCs. Eating attitudes were the strongest 
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predictor of speeding up under time pressure, more so than uncertainty sensitivity or anxiety and 
depression symptoms (see Figure S2). Moreover, this effect was related to a wide range of ED 
symptoms from multiple traditional diagnostic categories (see Figure 3, S5). We emphasise that 
these findings were unexpected, exploratory results and should be replicated for confirmation. 
Together, the findings suggest that increasing response vigour under time pressure may be a 
transdiagnostic marker of ED tendencies.

ADDITIONAL FILE
The additional file for this article can be found as follows:

•	 Supplementary Information. Figures S1 to S5 and Table S1. DOI: https://doi.org/10.5334/
cpsy.130.s1

ACKNOWLEDGEMENTS
We acknowledge financial support from the Max Planck Institute for Human Development, and 
thank Milena Musial, Luianta Verra, Noa Hedrich and Bilal Bari for their feedback.

FUNDING INFORMATION
Sam Hall-McMaster was supported by an Alexander von Humboldt Fellowship, and a Philip 
Wrightson Fellowship from the New Zealand Neurological Foundation. Ondrej Zika was supported 
by a Max Planck Research Group grant awarded by the Max Planck Society (M.TN.A.BILD0004) to 
Nicolas Schuck.

COMPETING INTERESTS
The authors have no competing interests to declare.

AUTHOR CONTRIBUTIONS
Sam Hall-McMaster and Ondrej Zika contributed equally.

AUTHOR AFFILIATIONS
Sam Hall-McMaster  orcid.org/0000-0003-1641-979X 
Max Planck Institute for Human Development, Germany; Harvard University, United States

Ondrej Zika  orcid.org/0000-0003-0483-4443 
Max Planck Institute for Human Development, Germany; Faculty of Psychology and Sports Science, Department 
of Psychology, Biological and Cognitive Neurosciences, Bielefeld University, Germany; Centre for Psychiatry 
Research, Department of Clinical Neuroscience, Karolinska Institutet, & Stockholm Health Care Services, Region 
Stockholm, Sweden; Department of Clinical Psychology and Psychotherapy, Babeș�-Bolyai University, Cluj-
Napoca, Romania

REFERENCES
Abdulkadir, M., Hübel, C., Herle, M., Loos, R. J., Breen, G., Bulik, C. M., & Micali, N. (2022). Eating disorder 

symptoms and their associations with anthropometric and psychiatric polygenic scores. European Eating 

Disorders Review, 30(3), 221–236. https://doi.org/10.1002/erv.2889

Addicott, M. A., Pearson, J. M., Kaiser, N., Platt, M. L., & McClernon, F. J. (2015). Suboptimal foraging 

behavior: a new perspective on gambling. Behavioral Neuroscience, 129(5), 656. https://doi.org/10.1037/

bne0000082

Addicott, M. A., Pearson, J. M., Sweitzer, M. M., Barack, D. L., & Platt, M. L. (2017). A primer on foraging and 

the explore/exploit trade-off for psychiatry research. Neuropsychopharmacology, 42(10), 1931–1939. 

https://doi.org/10.1038/npp.2017.108

https://doi.org/10.5334/cpsy.130.s1
https://doi.org/10.5334/cpsy.130.s1
https://orcid.org/0000-0003-1641-979X
https://orcid.org/0000-0003-1641-979X
https://orcid.org/0000-0003-0483-4443
https://orcid.org/0000-0003-0483-4443
https://doi.org/10.1002/erv.2889
https://doi.org/10.1037/bne0000082
https://doi.org/10.1037/bne0000082
https://doi.org/10.1038/npp.2017.108


138Hall-McMaster and Zika  
Computational Psychiatry  
DOI: 10.5334/cpsy.130

American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). 

https://doi.org/10.1176/appi.books.9780890425596

Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal 

of Statistical Software, 67(1). https://doi.org/10.18637/jss.v067.i01

Beck, A. T., Steer, R. A., & Brown, G. (1996). Beck Depression Inventory–II (BDI-II) [Database record]. APA 

PsycTests. https://doi.org/10.1037/t00742-000

Berland, N. W., Thompson, J. K., & Linton, P. H. (1986). Correlation between the EAT-26 and the EAT-

40, the Eating Disorders Inventory, and the Restrained Eating Inventory. International Journal 

of Eating Disorders, 5(3), 569–574. https://doi.org/10.1002/1098-108X(198603)5:3<569::AID-

EAT2260050314>3.0.CO;2-3

Bernardoni, F., Geisler, D., King, J. A., Javadi, A.-H., Ritschel, F., Murr, J., Reiter, A. M. F., Rössner, V., 
Smolka, M. N., Kiebel, S., & Ehrlich, S. (2018). Altered medial frontal feedback learning signals in 

anorexia nervosa. Biological Psychiatry, 83, 235–243. https://doi.org/10.1016/j.biopsych.2017.07.024

Bernardoni, F., King, J. A., Geisler, D., Ritschel, F., Schwoebel, S., Reiter, A. M. F., Endrass, T., Rössner, V., 
Smolka, M. N., & Ehrlich, S. (2021). More by stick than by carrot: A reinforcement learning style rooted in 

the medial frontal cortex in anorexia nervosa. Journal of Abnormal Psychology, 130, 736–747. https://doi.

org/10.1037/abn0000690

Bohn, K., & Fairburn, C. G. (2008). The Clinical Impairment Assessment Questionnaire. In Cognitive Behavior 

Therapy and Eating Disorders (pp. 265–308). New York: Guilford Press.

Brooks, M. E., Kristensen, K., Benthem, K. J., van Magnusson, A., Berg, C. W., Nielsen, A., et al. (2017). 

glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed 

modeling. The R Journal, 9(2), 378. https://doi.org/10.32614/RJ-2017-066

Brown, M., Robinson, L., Campione, G. C., Wuensch, K., Hildebrandt, T., & Micali, N. (2017). Intolerance 

of uncertainty in eating disorders: A systematic review and meta-analysis. European Eating Disorders 

Review, 25(5), 329–343. https://doi.org/10.1002/erv.2523

Buhr, K., & Dugas, M. J. (2002). The intolerance of uncertainty scale: Psychometric properties of the English 

version. Behavior Research and Therapy, 40(8), 931–945. https://doi.org/10.1016/S0005-7967(01)00092-4

Bustamante, L. A., Oshinowo, T., Lee, J. R., Tong, E., Burton, A. R., Shenhav, A., … & Daw, N. D. (2023). Effort 

Foraging Task reveals positive correlation between individual differences in the cost of cognitive and 

physical effort in humans. Proceedings of the National Academy of Sciences, 120(50), e2221510120. 

https://doi.org/10.1073/pnas.2221510120

Calhoun, A. J., & Hayden, B. Y. (2015). The foraging brain. Current Opinion in Behavioral Sciences, 5, 24–31. 

https://doi.org/10.1016/j.cobeha.2015.07.003

Cattell, R. B., Nelson, T. L., & Gorsuch, R. L. (1967). An improved scree test for factor analysis. Multivariate 

Behavioral Research, 2(3), 289–310. https://doi.org/10.1207/s15327906mbr1203_2

Chan, T. W. S., Ahn, W.-Y., Bates, J. E., Busemeyer, J. R., Guillaume, S., Redgrave, G. W., Danner, U. N., & 
Courtet, P. (2014). Differential impairments underlying decision making in anorexia nervosa and bulimia 

nervosa: A cognitive modeling analysis. International Journal of Eating Disorders, 47(2), 157–167. https://

doi.org/10.1002/eat.22223

Charnov, E. L. (1976). Optimal foraging, the marginal value theorem. Theoretical Population Biology, 9(2), 

129–136. https://doi.org/10.1016/0040-5809(76)90040-X

Constantino, S. M., & Daw, N. D. (2015). Learning the opportunity cost of time in a patch-foraging task. 

Cognitive, Affective, & Behavioral Neuroscience, 15, 837–853. https://doi.org/10.3758/s13415-015-0350-y

Davidson, J. D., & El Hady, A. (2019). Foraging as an evidence accumulation process. PLOS Computational 

Biology, 15(7), e1007060. https://doi.org/10.1371/journal.pcbi.1007060

Decker, J. H., Figner, B., & Steinglass, J. E. (2015). On weight and waiting: Delay discounting in anorexia 

nervosa pretreatment and posttreatment. Biological Psychiatry, 78(9), 606–614. https://doi.

org/10.1016/j.biopsych.2014.12.016

Drakes, D. H., Fawcett, E. J., Rose, J. P., Carter-Major, J. C., & Fawcett, J. M. (2021). Comorbid obsessive-

compulsive disorder in individuals with eating disorders: An epidemiological meta-analysis. Journal of 

Psychiatric Research, 141, 176–191. https://doi.org/10.1016/j.jpsychires.2021.06.035

Fairburn, C. G., & Beglin, S. J. (2008). Eating Disorder Examination. In Cognitive Behavior Therapy and Eating 

Disorders (pp. 265–308). New York: Guilford Press.

Filoteo, J. V., Paul, E. J., Ashby, F. G., Frank, G. K., Helie, S., Rockwell, R., … & Kaye, W. H. (2014). Simulating 

category learning and set shifting deficits in patients weight-restored from anorexia nervosa. 

Neuropsychology, 28(5), 741. https://doi.org/10.1037/neu0000055

Foa, E. B., Huppert, J. D., Leiberg, S., Langner, R., Kichic, R., Hajcak, G., & Salkovskis, P. M. (2002). The 

Obsessive-Compulsive Inventory: Development and validation of a short version. Psychological 

Assessment, 14(4), 485–496. https://doi.org/10.1037/1040-3590.14.4.485

https://doi.org/10.1176/appi.books.9780890425596
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.1037/t00742-000
https://doi.org/10.1002/1098-108X(198603)5:3<569::AID-EAT2260050314>3.0.CO;2-3
https://doi.org/10.1002/1098-108X(198603)5:3<569::AID-EAT2260050314>3.0.CO;2-3
https://doi.org/10.1016/j.biopsych.2017.07.024
https://doi.org/10.1037/abn0000690
https://doi.org/10.1037/abn0000690
https://doi.org/10.32614/RJ-2017-066
https://doi.org/10.1002/erv.2523
https://doi.org/10.1016/S0005-7967(01)00092-4
https://doi.org/10.1073/pnas.2221510120
https://doi.org/10.1016/j.cobeha.2015.07.003
https://doi.org/10.1207/s15327906mbr1203_2
https://doi.org/10.1002/eat.22223
https://doi.org/10.1002/eat.22223
https://doi.org/10.1016/0040-5809(76)90040-X
https://doi.org/10.3758/s13415-015-0350-y
https://doi.org/10.1371/journal.pcbi.1007060
https://doi.org/10.1016/j.biopsych.2014.12.016
https://doi.org/10.1016/j.biopsych.2014.12.016
https://doi.org/10.1016/j.jpsychires.2021.06.035
https://doi.org/10.1037/neu0000055
https://doi.org/10.1037/1040-3590.14.4.485


139Hall-McMaster and Zika  
Computational Psychiatry  
DOI: 10.5334/cpsy.130

Foerde, K., Daw, N. D., Rufin, T., Walsh, B. T., Shohamy, D., & Steinglass, J. E. (2021). Deficient goal-directed 

control in a population characterized by extreme goal pursuit. Journal of Cognitive Neuroscience, 33(3), 

463–481. https://doi.org/10.1162/jocn_a_01655

Foerde, K., Gianini, L., Wang, Y., Wu, P., Shohamy, D., Walsh, B. T., & Steinglass, J. E. (2018). Assessment of 

test-retest reliability of a food choice task among healthy individuals. Appetite, 123, 352–356. https://

doi.org/10.1016/j.appet.2018.01.010

Foerde, K., & Steinglass, J. E. (2017). Decreased feedback learning in anorexia nervosa persists after weight 

restoration. International Journal of Eating Disorders, 50(4), 415–423. https://doi.org/10.1002/eat.22709

Foerde, K., Steinglass, J. E., Shohamy, D., & Walsh, B. T. (2015). Neural mechanisms supporting maladaptive 

food choices in anorexia nervosa. Nature Neuroscience, 18(11), 1571–1573. https://doi.org/10.1038/

nn.4136

Fox, J., & Weisberg, S. (2019). An R companion to applied regression (3rd ed.). Los Angeles: SAGE.

Frankenhuis, W. E., Panchanathan, K., & Barto, A. G. (2019). Enriching behavioral ecology with reinforcement 

learning methods. Behavioural Processes, 161, 94–100. https://doi.org/10.1016/j.beproc.2018.01.008

Garner, D. M., Olmsted, M. P., Bohr, Y., & Garfinkel, P. E. (1982). The eating attitudes test: Psychometric 

features and clinical correlates. Psychological Medicine, 12(4), 871–878. https://doi.org/10.1017/

S0033291700049163

Guillaume, S., Gorwood, P., Jollant, F., Van den Eynde, F., Courtet, P., & Richard-Devantoy, S. (2015). 

Impaired decision-making in symptomatic anorexia and bulimia nervosa patients: a meta-analysis. 

Psychological Medicine, 45(16), 3377–3391. https://doi.org/10.1017/S003329171500152X

Hall-McMaster, S., Dayan, P., & Schuck, N. W. (2021). Control over patch encounters changes foraging 

behavior. iScience, 24(9). https://doi.org/10.1016/j.isci.2021.103005

Hall-McMaster, S., & Luyckx, F. (2019). Revisiting foraging approaches in neuroscience. Cognitive, Affective, & 

Behavioral Neuroscience, 19, 225–230. https://doi.org/10.3758/s13415-018-00682-z

Hagan, K. E., Aimufua, I., Haynos, A. F., & Walsh, B. T. (2024). The explore/exploit trade-off: An ecologically 

valid and translational framework that can advance mechanistic understanding of eating disorders. 

International Journal of Eating Disorders, 57(5), 1102–1108. https://doi.org/10.1002/eat.24173

Harhen, N. C., & Bornstein, A. M. (2023). Overharvesting in human patch foraging reflects rational 

structure learning and adaptive planning. Proceedings of the National Academy of Sciences, 120(13), 

e2216524120. https://doi.org/10.1073/pnas.2216524120

Harrop, E. N., Hutcheson, R., Harner, V., Mensinger, J. L., & Lindhorst, T. (2023). “You Don’t Look Anorexic”: 

Atypical anorexia patient experiences of weight stigma in medical care. Body Image, 46, 48–61. https://

doi.org/10.1016/j.bodyim.2023.04.008

Hayden, B. Y., Pearson, J. M., & Platt, M. L. (2011). Neuronal basis of sequential foraging decisions in a patchy 

environment. Nature Neuroscience, 14(7), 933–939. https://doi.org/10.1038/nn.2856

Hayden, B. Y., & Walton, M. E. (2014). Neuroscience of foraging. Frontiers in Neuroscience, 8, 81. https://doi.

org/10.3389/fnins.2014.00081

Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics, 

65–70.

Jenkinson, P. M., Koukoutsakis, A., Panagiotopoulou, E., Vagnoni, E., Demartini, B., Nistico, V., … & 
Fotopoulou, A. (2023). Body appearance values modulate risk aversion in eating restriction. Journal of 

Experimental Psychology: General, 52(12), 3418–3432. https://doi.org/10.1037/xge0001445

Kabakuş Aykut, M., & Bilici, S. (2022). The relationship between the risk of eating disorder and meal patterns 

in University students. Eating and Weight Disorders-Studies on Anorexia, Bulimia and Obesity, 27(2), 

579–587. https://doi.org/10.1007/s40519-021-01179-4

Kesby, A., Maguire, S., Brownlow, R., & Grisham, J. R. (2017). Intolerance of uncertainty in eating disorders: 

An update on the field. Clinical psychology review, 56, 94–105. https://doi.org/10.1016/j.cpr.2017.07.002

King, J. A., Geisler, D., Bernardoni, F., Ritschel, F., Böhm, I., Seidel, M., … & Ehrlich, S. (2016). Altered 

neural efficiency of decision making during temporal reward discounting in anorexia nervosa. Journal 

of the American Academy of Child & Adolescent Psychiatry, 55(11), 972–979. https://doi.org/10.1016/j.

jaac.2016.08.005

Kolling, N., & Akam, T. (2017). (Reinforcement?) Learning to forage optimally. Current opinion in neurobiology, 

46, 162–169. https://doi.org/10.1016/j.conb.2017.08.008

Kolling, N., Behrens, T. E., Mars, R. B., & Rushworth, M. F. (2012). Neural mechanisms of foraging. Science, 

336(6077), 95–98. https://doi.org/10.1126/science.1216930

Le Heron, C., Kolling, N., Plant, O., Kienast, A., Janska, R., Ang, Y. S., … & Apps, M. A. (2020). Dopamine 

modulates dynamic decision-making during foraging. Journal of Neuroscience, 40(27), 5273–5282. 

https://doi.org/10.1523/JNEUROSCI.2586-19.2020

https://doi.org/10.1162/jocn_a_01655
https://doi.org/10.1016/j.appet.2018.01.010
https://doi.org/10.1016/j.appet.2018.01.010
https://doi.org/10.1002/eat.22709
https://doi.org/10.1038/nn.4136
https://doi.org/10.1038/nn.4136
https://doi.org/10.1016/j.beproc.2018.01.008
https://doi.org/10.1017/S0033291700049163
https://doi.org/10.1017/S0033291700049163
https://doi.org/10.1017/S003329171500152X
https://doi.org/10.1016/j.isci.2021.103005
https://doi.org/10.3758/s13415-018-00682-z
https://doi.org/10.1002/eat.24173
https://doi.org/10.1073/pnas.2216524120
https://doi.org/10.1016/j.bodyim.2023.04.008
https://doi.org/10.1016/j.bodyim.2023.04.008
https://doi.org/10.1038/nn.2856
https://doi.org/10.3389/fnins.2014.00081
https://doi.org/10.3389/fnins.2014.00081
https://doi.org/10.1037/xge0001445
https://doi.org/10.1007/s40519-021-01179-4
https://doi.org/10.1016/j.cpr.2017.07.002
https://doi.org/10.1016/j.jaac.2016.08.005
https://doi.org/10.1016/j.jaac.2016.08.005
https://doi.org/10.1016/j.conb.2017.08.008
https://doi.org/10.1126/science.1216930
https://doi.org/10.1523/JNEUROSCI.2586-19.2020


140Hall-McMaster and Zika  
Computational Psychiatry  
DOI: 10.5334/cpsy.130

Lenth, R. (2020). Estimated marginal means, aka least-squares means. https://cran.r-project.org/

package=emmeans

Makowski, D., Ben-Shachar, M. S., Patil, I., & Lüdecke, D. (2020). Automated results reporting as a practical 

tool to improve reproducibility and interpretability. Journal of Open Source Software, 5(46), 2306. https://

doi.org/10.21105/joss.02306

Mobbs, D., Trimmer, P. C., Blumstein, D. T., & Dayan, P. (2018). Foraging for foundations in decision 

neuroscience: Insights from ethology. Nature Reviews Neuroscience, 19(7), 419–427. https://doi.

org/10.1038/s41583-018-0010-7

Onysk, J., & Seriès, P. (2022). The effect of body image dissatisfaction on goal-directed decision making in a 

population marked by negative appearance beliefs and disordered eating. Plos One, 17(11), e0276750. 

https://doi.org/10.1371/journal.pone.0276750

Peirce, J., Gray, J. R., Simpson, S., MacAskill, M., Höchenberger, R., Sogo, H., … & Lindeløv, J. K. (2019). 

PsychoPy2: Experiments in behavior made easy. Behavior Research Methods, 51(1), 195–203. https://doi.

org/10.3758/s13428-018-01193-y

Pieters, G., Sabbe, B., Hulstijn, W., Probst, M., Vandereycken, W., & Peuskens, J. (2003). Fast psychomotor 

functioning in underweight anorexia nervosa patients. Journal of Psychiatric Research, 37(6), 501–508. 

https://doi.org/10.1016/S0022-3956(03)00067-0

Pike, A. C., Sharpley, A. L., Park, R. J., Cowen, P. J., Browning, M., & Pulcu, E. (2023). Adaptive learning from 

outcome contingencies in eating-disorder risk groups. Translational Psychiatry, 13(1), 340. https://doi.

org/10.1038/s41398-023-02633-w

Radzikowska, M., Pike, A. C., & Hall-McMaster, S. (2025). Computational perspectives on cognition in 

anorexia nervosa: A systematic review. Computational Psychiatry, 9(1), 100. https://doi.org/10.5334/

cpsy.128

Raio, C. M., Biernacki, K., Kapoor, A., Wengler, K., Bonagura, D., Xue, J., … & Konova, A. B. (2022). Suboptimal 

foraging decisions and involvement of the ventral tegmental area in human opioid addiction. BioRxiv. 

https://doi.org/10.1101/2022.03.24.485654

Razza, L. B., Grol, M., Le Heron, C., Boschmans, G., Vanderhasselt, M. A., & De Raedt, R. (2025). Should I 

stay or should I go? Investigating reward-based decision-making in anhedonic individuals. Behaviour 

Research and Therapy, 104782. https://doi.org/10.1016/j.brat.2025.104782

Revelle, W. (2023). psych: Procedures for psychological, psychometric, and personality research (Version 

2.3.3) [Computer software]. Northwestern University. https://CRAN.R-project.org/package=psych

Rizk, M., Lalanne, C., Berthoz, S., Kern, L., EVHAN Group, & Godart, N. (2015). Problematic exercise in 

anorexia nervosa: testing potential risk factors against different definitions. Plos One, 10(11), e0143352. 

https://doi.org/10.1371/journal.pone.0143352

Romano, K. A., Lipson, S. K., Beccia, A. L., Quatromoni, P. A., Gordon, A. R., & Murgueitio, J. (2022). Changes 

in the prevalence and sociodemographic correlates of eating disorder symptoms from 2013 to 2020 

among a large national sample of US young adults: A repeated cross-sectional study. International 

Journal of Eating Disorders, 55(6), 776–789. https://doi.org/10.1002/eat.23709

Rouhani, N., Grossman, C. D., Feusner, J., & Tusche, A. (2025). Eating disorder symptoms and emotional 

arousal modulate food biases during reward learning in females. Nature Communications, 16(1), 2938. 

https://doi.org/10.1038/s41467-025-57872-w

Schuman, I., Wang, J., Ballard, I. C., & Lapate, R. C. (2025). Willing to wait: Anorexia nervosa 

symptomatology is associated with higher future orientation and reduced intertemporal discounting. 

Scientific Reports, 15(1), 4508. https://doi.org/10.1038/s41598-024-80597-7

Spielberger, C. D. (1983). State-Trait Anxiety Inventory for Adults. https://doi.org/10.1037/t06496-000

Steinglass, J. E., Figner, B., Berkowitz, S., Simpson, H. B., Weber, E. U., & Walsh, B. T. (2012). Increased 

capacity to delay reward in anorexia nervosa. Journal of the International Neuropsychological Society: 

JINS, 18(4), 773–780. https://doi.org/10.1017/S1355617712000446

Steinglass, J. E., Lempert, K. M., Choo, T. H., Kimeldorf, M. B., Wall, M., Walsh, B. T., Fyer, A. J., Schneier, F. 
R., & Simpson, H. B. (2017). Temporal discounting across three psychiatric disorders: Anorexia nervosa, 

obsessive compulsive disorder, and social anxiety disorder. Depression and Anxiety, 34(5), 463–470. 

https://doi.org/10.1002/da.22586

Steinglass, J. E., & Walsh, B. T. (2016). Neurobiological model of the persistence of anorexia nervosa. Journal 

of Eating Disorders, 4(1), 19. https://doi.org/10.1186/s40337-016-0106-2

Steinglass, J. E., Walsh, B. T., & Stern, Y. (2006). Set shifting deficit in anorexia nervosa. Journal of the 

International Neuropsychological Society, 12(3), 431–435. https://doi.org/10.1017/S1355617706060528

Stephens, D. W. (2008). Decision ecology: foraging and the ecology of animal decision making. Cognitive, 

Affective, & Behavioral Neuroscience, 8(4), 475–484. https://doi.org/10.3758/CABN.8.4.475

https://cran.r-project.org/package=emmeans
https://cran.r-project.org/package=emmeans
https://doi.org/10.21105/joss.02306
https://doi.org/10.21105/joss.02306
https://doi.org/10.1038/s41583-018-0010-7
https://doi.org/10.1038/s41583-018-0010-7
https://doi.org/10.1371/journal.pone.0276750
https://doi.org/10.3758/s13428-018-01193-y
https://doi.org/10.3758/s13428-018-01193-y
https://doi.org/10.1016/S0022-3956(03)00067-0
https://doi.org/10.1038/s41398-023-02633-w
https://doi.org/10.1038/s41398-023-02633-w
https://doi.org/10.5334/cpsy.128
https://doi.org/10.5334/cpsy.128
https://doi.org/10.1101/2022.03.24.485654
https://doi.org/10.1016/j.brat.2025.104782
https://CRAN.R-project.org/package=psych
https://doi.org/10.1371/journal.pone.0143352
https://doi.org/10.1002/eat.23709
https://doi.org/10.1038/s41467-025-57872-w
https://doi.org/10.1038/s41598-024-80597-7
https://doi.org/10.1037/t06496-000
https://doi.org/10.1017/S1355617712000446
https://doi.org/10.1002/da.22586
https://doi.org/10.1186/s40337-016-0106-2
https://doi.org/10.1017/S1355617706060528
https://doi.org/10.3758/CABN.8.4.475


141Hall-McMaster and Zika  
Computational Psychiatry  
DOI: 10.5334/cpsy.130

TO CITE THIS ARTICLE:
Hall-McMaster, S., & Zika, O. 
(2025). Increasing Response 
Vigour Under Time Pressure 
as a Transdiagnostic Marker of 
Eating Disorders. Computational 
Psychiatry, 9(1), pp. 124–141. DOI: 
https://doi.org/10.5334/cpsy.130

Submitted: 16 November 2024 
Accepted: 31 July 2025 
Published: 14 August 2025

COPYRIGHT:
© 2025 The Author(s). This is an 
open-access article distributed 
under the terms of the Creative 
Commons Attribution 4.0 
International License (CC-BY 
4.0), which permits unrestricted 
use, distribution, and 
reproduction in any medium, 
provided the original author 
and source are credited. See 
http://creativecommons.org/
licenses/by/4.0/.

Computational Psychiatry is 
a peer-reviewed open access 
journal published by Ubiquity 
Press.

Stephens, D. W., & Krebs, J. R. (1986). Foraging Theory (Vol. 1). Princeton University Press. https://doi.

org/10.1515/9780691206790

St-Pierre, M. J., Therriault, P. Y., Faghihi, U., & Monthuy-Blanc, J. (2023). Eating disorders: when food “eats” 

time. Appetite, 185, 106509. https://doi.org/10.1016/j.appet.2023.106509

Sukumar, S., Shadmehr, R., & Ahmed, A. A. (2024). Effects of reward and effort history on decision making 

and movement vigor during foraging. Journal of Neurophysiology, 131(4), 638–651. https://doi.

org/10.1152/jn.00092.2023

Swinbourne, J. M., & Touyz, S. W. (2007). The co-morbidity of eating disorders and anxiety disorders: A 

review. European Eating Disorders Review, 15(4), 253–274. https://doi.org/10.1002/erv.784

Sysko, R., Walsh, B. T., Schebendach, J., & Wilson, G. T. (2005). Eating behavior among women with anorexia 

nervosa. American Journal of Clinical Nutrition, 82(2), 296–301. https://doi.org/10.1093/ajcn/82.2.296

Tappe, K. A., Gerberg, S. E., Shide, D. J., Rolls, B. J., & Andersen, A. E. (1998). Videotape assessment of 

changes in aberrant meal-time behaviors in anorexia nervosa after treatment. Appetite, 30(2), 171–184. 

https://doi.org/10.1006/appe.1997.0131

Touchette, E., Henegar, A., Godart, N. T., Pryor, L., Falissard, B., Tremblay, R. E., & Côté, S. M. (2011). 

Subclinical eating disorders and their comorbidity with mood and anxiety disorders in adolescent girls. 

Psychiatry Research, 185(1–2), 185–192. https://doi.org/10.1016/j.psychres.2010.04.005

Veale, D., Eshkevari, E., Kanakam, N., Ellison, N., Costa, A., & Werner, T. (2014). The Appearance Anxiety 

Inventory: Validation of a process measure in the treatment of body dysmorphic disorder. Behavioural 

and Cognitive Psychotherapy, 42(5), 605–616. https://doi.org/10.1017/S1352465813000556

Verharen, J. P. H., Danner, U. N., Schröder, S., Aarts, E., Elburg, A. A., & Adan, R. A. H. (2019). Insensitivity to 

losses: A core feature in patients with anorexia nervosa? Biological Psychiatry: Cognitive Neuroscience and 

Neuroimaging, 4(11), 995–1003. https://doi.org/10.1016/j.bpsc.2019.05.001

Voon, V., Reiter, A., Sebold, M., & Groman, S. (2017). Model-based control in dimensional psychiatry. 

Biological Psychiatry, 82(6), 391–400. https://doi.org/10.1016/j.biopsych.2017.04.006

Wierenga, C. E., Reilly, E., Bischoff-Grethe, A., Kaye, W. H., & Brown, G. G. (2021). Altered reinforcement 

learning from reward and punishment in anorexia nervosa: Evidence from computational modeling. 

Journal of the International Neuropsychological Society: JINS, 1–13. https://doi.org/10.1017/

S1355617721001326

Wilke, A., Hutchinson, J. M., Todd, P. M., & Czienskowski, U. (2009). Fishing for the right words: Decision 

rules for human foraging behavior in internal search tasks. Cognitive Science, 33(3), 497–529. https://doi.

org/10.1111/j.1551-6709.2009.01020.x

Wise, T., Robinson, O. J., & Gillan, C. M. (2023). Identifying transdiagnostic mechanisms in mental health 

using computational factor modeling. Biological Psychiatry, 93(8), 690–703. https://doi.org/10.1016/j.

biopsych.2022.09.034

Wittmann, M. K., Kolling, N., Akaishi, R., Chau, B. K., Brown, J. W., Nelissen, N., & Rushworth, M. F. (2016). 

Predictive decision making driven by multiple time-linked reward representations in the anterior 

cingulate cortex. Nature Communications, 7(1), 12327. https://doi.org/10.1038/ncomms12327

Wu, M., Brockmeyer, T., Hartmann, M., Skunde, M., Herzog, W., & Friederich, H.-C. (2014). Set-shifting ability 

across the spectrum of eating disorders and in overweight and obesity: A systematic review and meta-

analysis. Psychological Medicine, 44(16), 3365–3385. https://doi.org/10.1017/S0033291714000294

Yoon, T., Geary, R. B., Ahmed, A. A., & Shadmehr, R. (2018). Control of movement vigor and decision making 

during foraging. Proceedings of the National Academy of Sciences, 115(44), E10476–E10485. https://doi.

org/10.1073/pnas.1812979115

https://doi.org/10.5334/cpsy.130
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1515/9780691206790
https://doi.org/10.1515/9780691206790
https://doi.org/10.1016/j.appet.2023.106509
https://doi.org/10.1152/jn.00092.2023
https://doi.org/10.1152/jn.00092.2023
https://doi.org/10.1002/erv.784
https://doi.org/10.1093/ajcn/82.2.296
https://doi.org/10.1006/appe.1997.0131
https://doi.org/10.1016/j.psychres.2010.04.005
https://doi.org/10.1017/S1352465813000556
https://doi.org/10.1016/j.bpsc.2019.05.001
https://doi.org/10.1016/j.biopsych.2017.04.006
https://doi.org/10.1017/S1355617721001326
https://doi.org/10.1017/S1355617721001326
https://doi.org/10.1111/j.1551-6709.2009.01020.x
https://doi.org/10.1111/j.1551-6709.2009.01020.x
https://doi.org/10.1016/j.biopsych.2022.09.034
https://doi.org/10.1016/j.biopsych.2022.09.034
https://doi.org/10.1038/ncomms12327
https://doi.org/10.1017/S0033291714000294
https://doi.org/10.1073/pnas.1812979115
https://doi.org/10.1073/pnas.1812979115

	﻿﻿﻿﻿﻿﻿﻿Introduction

	﻿﻿﻿﻿﻿﻿﻿Methods

	﻿﻿﻿﻿﻿﻿﻿Participants

	﻿﻿﻿﻿﻿﻿﻿Materials

	﻿﻿﻿﻿﻿﻿﻿Procedure

	﻿﻿﻿﻿﻿﻿﻿Statistical Analyses

	﻿﻿﻿﻿﻿﻿﻿Computational modelling

	﻿﻿﻿﻿﻿﻿﻿Factor analysis

	﻿﻿﻿﻿﻿﻿﻿Data and code availability


	﻿﻿﻿﻿﻿﻿﻿Results

	﻿﻿﻿﻿﻿﻿﻿Experimental manipulations produced changes in leaving time

	﻿﻿﻿﻿﻿﻿﻿Group characteristics

	﻿﻿﻿﻿﻿﻿﻿Subclinical ED and control groups showed comparable leaving behaviour

	﻿﻿﻿﻿﻿﻿﻿Subclinical ED and control groups had comparable choice parameters

	﻿﻿﻿﻿﻿﻿﻿The subclinical ED group showed increasing response vigour


	﻿﻿﻿﻿﻿﻿﻿Discussion

	﻿﻿﻿﻿﻿﻿﻿ADDITIONAL FILE

	﻿﻿﻿﻿﻿﻿﻿Acknowledgements

	﻿﻿﻿﻿﻿﻿﻿Funding Information

	﻿﻿﻿﻿﻿﻿﻿Competing Interests

	﻿﻿﻿﻿﻿﻿﻿﻿AUTHOR contributions

	﻿﻿﻿﻿﻿﻿﻿﻿AUTHOR AFFILIATIONS

	﻿﻿﻿﻿﻿﻿﻿References


