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Abstract

Many complex real-world decisions, such as deciding which house to buy or whether to switch jobs, involve trying to maximize
reward across a sequence of choices. Optimal Foraging Theory is well suited to study these kinds of choices because it provides
formal models for reward-maximization in sequential situations. In this article, we review recent insights from foraging neuro-
science, behavioral ecology, and computational modelling. We find that a commonly used approach in foraging neuroscience, in
which choice items are encountered at random, does not reflect the way animals direct their foraging efforts in certain real-world
settings, nor does it reflect efficient reward-maximizing behavior. Based on this, we propose that task designs allowing subjects to
encounter choice items strategically will further improve the ecological validity of foraging approaches used in neuroscience, as
well as give rise to new behavioral and neural predictions that deepen our understanding of sequential, value-based choice.
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Introduction

For many decades, neural processes governing reward maximi-
zation have been a central interest in decision neuroscience. One
framework that has contributed to our understanding of these
processes is reinforcement learning (RL), in which an animal
learns to maximize long-run future reward by trial-and-error
(Sutton & Barto, 1998) or model-based strategies (Lee,
Shimojo, & O’Doherty, 2014). As one example of this contribu-
tion, studies in RL have led to the proposal that midbrain dopa-
mine neurons convey a prediction error signal to dorsal anterior
cingulate cortex (dACC), allowing it to influence motor control
selection when errors are made, or reward outcomes are lower
than expected (Holroyd & Coles, 2002; Holroyd et al., 2004;
Silvetti, Alexander, Verguts, & Brown, 2014).

In recent years, RL has been complimented by a new ap-
proach, based on Optimal Foraging Theory (Stephens &
Krebs, 1986). The foraging approach has two main
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characteristics. The first is that it focuses on optimization
problems, in which subjects must maximize a reward quantity
in relation to another variable, such as time or effort expended.
The second is that foraging tasks consist of a foreground op-
tion, which is currently being pursued, and background op-
tions the subject is not currently engaged with (Hayden, 2018;
Hayden & Walton, 2014; Pearson, Watson, & Platt, 2014;
Stephens, 2008). The foraging approach is thus distinct from
many RL and economic choice tasks, in which choice items
are presented simultaneously (Mobbs, Trimmer, Blumstein, &
Dayan, 2018; Pearson et al., 2014). In addition, most foraging
studies in neuroscience do not allow decision-makers to direct
their encounters with choice items, a feature that is distinct
from many sequential RL tasks, in which choice items or
bandits can be revisited through model-based planning
(Daw, Gershman, Seymour, Dayan, & Dolan, 2011; Kool,
Gershman, & Cushman, 2017; Mobbs et al., 2018).

Two long-standing theoretical problems in animal behavior
research have guided the recent interest in foraging within
neuroscience (e.g., Kolling, Behrens, Mars, & Rushworth,
2012; Pearson et al., 2014). The first deals with stay-switch
(or patch-leaving) dilemmas, in which an individual experi-
ences an option with diminishing returns and must decide
when it is best to leave that option. The other deals with ac-
cept-reject (or diet-selection) dilemmas, in which an individ-
ual chooses whether to engage with an option or ignore it in
search of a better one (Stephens & Krebs, 1986; Stephens,
2008).
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Recent applications of foraging approaches in neuroscience
have drawn on foundational models in Foraging Theory
(Charnov, 1976; Stephens & Krebs, 1986), generating new
avenues and insights in the study of sequential, value-based
choice (e.g., Hayden et al., 2011; Kolling et al., 2012).
Nevertheless, growing evidence from behavioral ecology
demonstrates that these approaches do not capture situations
in which animals can use their knowledge of the environment
to encounter choice items strategically (Fagan et al., 2013;
Janmaat, Ban, & Boesch, 2013; Menzel, 1999; Merkle,
Potts, & Fortin, 2017; Merkle, Fortin, & Morales, 2014;
Sayers & Menzel, 2012). The purpose of this article is to
review current approaches used in foraging neuroscience, to
present evidence that these approaches are violated by animals
in some settings, and to provide practical recommendations
that offer new scope for understanding sequential, value-based
choice.

Insights from foraging neuroscience

Neural investigations using stay-switch and accept-reject tasks
have primarily revealed important contributions of dACC to
decision-making. Research using the stay-switch framework
has shown that firing rates of neurons in monkey dACC pos-
itively correlate with decisions to leave a patch (option disen-
gagement). These firing rates scale with increasing travel time
to the next patch, suggesting that dACC neurons may set a
threshold for switching and that this threshold is sensitive to
the time cost of switch decisions (Hayden et al., 2011).
Research using the accept-reject framework has shown that
neurons in monkey dACC encode the time cost associated
with choosing an option (option engagement). The activity
patterns in a subset of dACC neurons also correlate with the
value of rejected offers, suggesting that dACC keeps track of
post-decision variables (Blanchard & Hayden, 2014).

In addition to insights from non-human primates, accept-
reject studies in humans have played an important role in
functional comparisons between dACC and the ventromedial
prefrontal cortex (vimPFC) (Rushworth, Kolling, Sallet, &
Mars, 2012). In particular, studies comparing accept-reject
choices with economic ones have shown that BOLD activity
in the dACC is positively correlated with the value of
searching for alternative options, whereas vmPFC activity is
positively correlated with the chosen option’s reward magni-
tude during binary economic choices (Kolling et al., 2012).
These results seem to suggest that dACC plays a more prom-
inent role in decisions to engage with options or search for
alternatives and that the vimPFC plays a more prominent role
in classic binary economic decisions. However, more recent
work has provided evidence for another interpretation of
dACC function in foraging scenarios, wherein dACC BOLD
activity reflects choice difficulty (Ebitz & Hayden, 2016;
Shenhav, Straccia, Cohen, & Botvinick, 2014). Additionally,
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BOLD signals in dACC and vmPFC have been shown to
correlate with the relative value of searching for alterna-
tives over engaging with current options, suggesting that
both regions may represent similar information in foraging
scenarios (Shenhav, Straccia, Botvinick, & Cohen,
2016b).

Alongside ongoing debate about frontal contributions to
foraging, two major trends are emerging in foraging neurosci-
ence. One is that we are beginning to expand our knowledge
of foraging circuitry beyond the dACC and vimPFC (Barack,
Chang, & Platt, 2017; Kane et al., 2017; Lottem et al., 2018).
For example, it has recently been shown that neurons in pos-
terior cingulate cortex (PCC) ramp up activity several seconds
before monkeys make switch decisions, suggesting PCC sig-
nals reflect either an increasing motivation to disengage from
current options, the value of alternative options or choice dif-
ficulty (Barack et al., 2017). In addition, recent evidence dem-
onstrates that pharmacogenetically increasing neuronal activ-
ity in the locus coeruleus, a major site of norepinephrine neu-
rons, causes rats to make switch decisions significantly earlier
than control animals (Kane et al., 2017). By contrast,
optogenetic activation of neurons in the dorsal raphae nucleus,
a major site of serotonin neurons, causes mice to persist with
active exploitation decisions for longer and abandon patches
later than controls (Lottem et al., 2018). Taken together, these
results suggest that several regions beyond dACC, including
subcortical structures with distinct neurotransmitter classes
(catecholamines and monoamines), make important contribu-
tions to the neural computations performed during stay-switch
dilemmas and the choices that result.

The second major trend is the increasing use of RL tech-
niques in foraging research, to model behavior in environ-
ments where on-going learning is needed to optimize deci-
sions (Constantino & Daw, 2015; Frankenhuis,
Panchanathan, & Barto, 2018; Kolling & Akam, 2017;
Wittmann et al., 2016). One classic model for optimal stay-
switch behavior in foraging is called the marginal value-
theorem (MVT), which states that, for environments with
patches that have monotonically depleting reward rates, it is
optimal to leave the current patch when its reward rate drops
to the average reward rate of the environment (Charnov,
1976). Constantino and Daw (2015) showed that MVT better
predicts trial-by-trial choices in a stay-switch task than a tem-
poral difference RL model. However, when patches are not
monotonically depleting or people need to anticipate future
values within a patch, models using RL parameters can pro-
vide more optimal solutions (Kolling & Akam, 2017). For
instance, an RL model that generates value estimates for
stay-switch choices by integrating reward information over
multiple time scales successfully predicted whether people
would switch away from current options in a dynamic patch
environment, and components of this model were reflected in
BOLD activity of human dACC (Wittmann et al., 2016).
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The case for directed encounters

In many of the foraging studies reviewed above, subjects have
limited (and often no) control over the successive items they
encounter (Constantino & Daw, 2015; Hayden et al., 2011;
Kolling et al., 2012; Shenhav et al., 2016b; Shenhav et al.,
2014). In other words, new prey and patch items are encoun-
tered randomly or pseudorandomly. The use of this approach
in neuroscience has undoubtedly deepened our understanding
about foraging behavior and sequential decision-making more
broadly (e.g., Hayden et al., 2011; Kolling et al., 2012).
Nevertheless, mounting evidence from studies in behavioral
ecology indicate that designs with purely random encounters
do not reflect situations in which animals can direct their for-
aging efforts by choosing to revisit valuable patches or prey
items. To illustrate, consider a fruit tree that contains a small
portion of ripe fruit and a large portion of unripe fruit. The ripe
fruit can be harvested immediately but the animal may also
benefit from revisiting the tree to harvest the remaining fruit
once it ripens. Similarly, it may be beneficial to remember the
locations of trees bearing a large amount of fruit in the summer
months, so they can be exploited the following season. This
kind of foraging strategy, in which high value items are
revisited and low value items are avoided, could greatly re-
duce search time and thereby improve biological fitness
(Merkle et al., 2017, 2014; Riotte-Lambert, Benhamou, &
Chamaillé-Jammes, 2015; Sayers & Menzel, 2012).

A substantial body of empirical work corroborates the no-
tion that, in several situations, animals do not encounter
choice items at random but use their knowledge of the envi-
ronment to encounter items strategically (Fagan et al., 2013).
Bison move to meadows that have previously been profitable,
especially after encountering a poor quality patch (Merkle
et al., 2014). When modelling bison patch selection, a model
using random patch encounters is less efficient than a model
incorporating memory processes, and cannot fully capture bi-
son choice behavior (Merkle et al., 2017; see also Riotte-
Lambert et al., 2015). In non-human primates, chimpanzees
have been observed to monitor candidate fruit trees during
travel but also engage in goal-directed travel to specific trees,
based on the size and location of trees they have learned about
from previous visits (Janmaat et al., 2013). Alongside real-
world studies, more controlled laboratory experiments indi-
cate that when animals are allowed to direct their search strat-
egy, they are unequivocally non-random. Chimpanzees direct
their search by integrating information about food quantity,
handling time, and distance from previous encounters to max-
imize the rate of energy intake (Sayers & Menzel, 2012), and
rhesus monkeys rarely revisit patches they know to be empty
from previous experience, but do so when memory is im-
paired by lesioning the sulcus principalis (Passingham, 1985).

Situations allowing animals to direct their encounters with
choice items introduces a new decision dilemma. In stay-

switch situations, for example, animals must not only decide
when to disengage from the current option, but also where to
move next. In natural environments, this selection dilemma
may be especially relevant to central-place foragers, such as
bees or owls, who undertake foraging trips from a central hive
or nest. Evidence suggests that patch-selection choices of
central-place foragers are not random (Rosenberg &
McKelvey, 1999) and that directed selection-based knowl-
edge of the environment can increase reward intake when
patches are spatially clustered (Barraquand, Inchausti, &
Bretagnolle, 2009). This selection dilemma may be less im-
portant to inter-patch (or ‘nomadic’) foragers, who are often
assumed to encounter patches or prey at random (Barraquand
et al., 2009).

Practical suggestions

Based on the evidence outlined above, one way to extend
foraging approaches in neuroscience is to allow non-random
encounters in future designs. For illustrative purposes, we can
imagine a simple grid-world task as one possible assay. The
grid contains a number of randomly distributed ‘patch’ tiles,
from which rewards can be harvested and a number of inter-
vening tiles, which represent the travel time between patches.
Following a leave decision, participants select the next patch
tile they wish to visit, which could include both previously
visited patches and unexplored ones. To provide context to the
predictions that follow, we assume patches have different
maximum reward values but follow the same depletion func-
tion when being exploited. We also assume the maximum
reward capacity of each patch is fixed and that subjects’ patch
selections are deterministic. Our final assumption is that the
replenish rate of patches exceeds the travel time to reach them.
Under this final assumption, MVT converges to the optimal
solution (Possingham & Houston, 1990), making it an ade-
quate predictive framework for our purposes.

With these changes in mind, the empirical work reviewed
above implies several behavioral and neural predictions.
Behaviorally, one prediction is that patch selection will be-
come less random over time. From an RL perspective, this
can be viewed as a declining policy parameter that reduces
the amount of exploration relative to exploitation (Sutton &
Barto, 1998). As subjects learn about the value and distribu-
tion of different patches, they can encounter items strategically
by revisiting high-value items, which have high reward-travel
time ratios. Once patch values have been learnt, designs
allowing directed encounters should produce lower switching
thresholds than random encounter designs. From the perspec-
tive of MVT, choosing only options with high reward-travel
time ratios will increase the average experienced reward rate,
allowing this global switching threshold to be met more
quickly by the current option. From another perspective, sub-
jects may set their leaving threshold to the next best alternative
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(i.e., a local threshold set to the alternative with the highest
reward-travel time ratio) in a directed encounter design.
Because low value options can be avoided, this local threshold
would also be met more quickly by the current option.
Whether subjects use a global or local leaving threshold in
directed designs is an empirical question. For our purposes,
what is most important is that both perspectives predict lower
leaving thresholds, compared with a random encounter design
in which MVT provides the optimal solution.

From a neural perspective, if the firing rate of dACC neu-
rons reflects a threshold for switching (Hayden et al., 2011),
dACC thresholds for stay-switch decisions should be lower in
task designs that allow directed encounters compared with
random encounter designs. Again, this is because repeated
exposure to low-value alternatives can be avoided in directed
encounter designs, resulting in a lower global or local thresh-
old for switching away from current options. This prediction
has parallels with Hayden et al. (2011), who manipulated re-
ward rates by changing the travel time between patches. This
work showed that dACC thresholds for switching were lower
for decreasing travel times (i.e., higher reward rates), consis-
tent with the proposal that higher reward rates afforded by
directed encounter designs should produce lower leaving
thresholds.

Discussion

These suggestions represent a first step towards the develop-
ment of new foraging approaches in neuroscience, which al-
low directed encounters with choice items. More complex
designs could consider different relationships between replen-
ish rate and travel time. The importance of these factors has
been highlighted by Possingham and Houston (1990), who
show that when patches replenish slower than the time it takes
to revisit them, MVT fails to maximize reward. This has also
been demonstrated in stochastic environments, where repeat-
ed sampling is required to determine patch quality, or environ-
ments where reward rates initially increase as the richest part
of the patch is located (McNamara, 1982; Oaten, 1977). In
these latter situations, Kolling and Akam (2017) propose that
comparing the expected future reward rate of a patch against
the global average will lead to more optimal patch-leaving
choices than traditional MVT (Charnov, 1976). Thus, RL
frameworks may be increasingly important for understanding
choice behavior in more complex foraging designs, such as
those that allow patch revisiting.

In addition to these considerations, dACC has many com-
peting theories about its role in decision-making. As a starting
point, we have framed our neural predictions under the view
that JACC may encode a threshold for switching away from
current options (Hayden et al., 2011). A related view proposes
that dACC modulates behavioral flexibility by tracking the
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value of alternative choice options (search value) (Kolling,
Behrens, Wittmann, & Rushworth, 2016a; Kolling et al.,
2016b). These accounts may not be mutually exclusive
(Blanchard & Hayden, 2014); however, it remains an open
question whether dACC activity will be lower at the point
switches are made, reflecting a lower switching threshold
(Hayden, 2011), or whether it will be higher due to higher
search values (Kolling et al. 2012; Kolling et al., 2016a, b)
in directed encounter designs. In contrast to accounts focusing
on dACC’s role in behavioral persistence and flexibility,
Expected Value of Control Theory contends that dACC sig-
nals the need for cognitive control and the value of exerting
control, given its computational cost. By integrating this in-
formation, the theory ascribes dACC a key role in determining
where cognitive control should be directed and how much it
should be deployed (Ebitz & Hayden, 2016; Shenhav, Cohen,
& Botvinick, 2016a; Shenhav et al., 2014). Single-cell record-
ings and anatomical studies provide evidence for another
view, wherein dACC tracks contextual variables, linking task
contexts with appropriate action plans (Heilbronner &
Hayden, 2016). Foraging studies have played a prominent role
in contemporary debate about dACC (Ebitz & Hayden, 2016)
and the development of new foraging approaches, such as
those involving dynamic replenish rates or allowing patch
revisiting, may be useful to further distinguish competing the-
ories about its function.

In this respect, one limitation of the stay-switch designs we
have covered is that there may be an insufficient range of
foreground and background values to fully decouple flexibil-
ity (Kolling et al., 2016b) from choice difficulty accounts
(Shenhav et al., 2016a; Shenhav et al., 2014). Subjects are
unlikely to stay in patches until the current value is dramati-
cally lower than the average experienced reward rate, whereas
it is much easier to present a low value foreground offer
against a high value set of alternatives in accept-reject studies.
The use of directed encounters in accept-reject designs may
thus be useful in considering further tests of dACC theories. In
such designs, participants could have the choice about wheth-
er to engage with a two-option foreground gamble, with a set
of alternatives visible in the background (Kolling et al., 2012;
Shenhav et al., 2016b; Shenhav et al., 2014). Rejecting the
foreground offer, the subject would be able to select an option
from a set of background alternatives as one of the next fore-
ground options, in contrast to previous studies where the new
foreground options were randomly drawn from the set of al-
ternatives. In a similar manner to stay-switch designs, one
prediction is that rejection thresholds will no longer be set
based on the average value of the alternatives (a global thresh-
old) but on the most valuable alternative among the set (a local
threshold). Note that in this case the global threshold refers to
the average value of presented alternatives, whereas in stay-
switch designs it refers to the average experienced reward rate.
If dACC activity correlates with choice difficulty (Shenhav
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et al., 20164, b; Shenhav et al., 2014), we should observe a
difference in activity for the same set of alternatives.
Specifically, if the value of the alternatives being considered
are different under random and directed encounter conditions
(e.g., background average vs. best alternative), this would
make the decision to reject more or less difficult, and this
difference should be reflected in dACC activity under the
choice difficulty account. Therefore, while many of our prac-
tical suggestions have been framed under the broad view that
dACC contributes to behavioral flexibility (Hayden et al.,
2011; Kolling et al., 2012; Kolling et al., 2016b), the example
above shows that directed encounters can be applied to other
theories of dACC. Moreover, while our neural predictions
have focused on dACC, the development of new foraging
approaches, such as those allowing options to be revisited,
may hold value in supporting the recent trend of investigating
other cortical and subcortical contributions to foraging deci-
sions (Barack, Chang, & Platt, 2017; Kane et al., 2017,
Lottem et al., 2018).

Conclusion

Neuroscience has made great strides in using foraging as a
tool to understand the neural computations that underlie se-
quential, value-based choice. In reviewing these insights,
alongside those from behavioral ecology and computational
modelling, we have presented evidence demonstrating that,
while useful, current task designs involving random encoun-
ters with choice items do not reflect situations in which ani-
mals can make use of their knowledge in the environment to
encounter items strategically (Fagan et al., 2013; Menzel,
1999; Merkle et al., 2017, 2014; Passingham, 1985; Sayers
& Menzel, 2012). Based on this evidence, we propose that
task designs allowing subjects to revisit choice items will fur-
ther improve the ecological validity of foraging approaches
used in neuroscience. In addition, we have derived several
behavioral and neural predictions centered on the idea that
the value of switching away from current options can be
higher in directed encounter designs. This is because individ-
uals can base their decisions to switch on a subset of valuable
alternatives, modulating global or local thresholds for choice
disengagement. Finally, there is a clear trend towards integrat-
ing RL and foraging approaches to understand sequential
choice processes in complex settings (Constantino & Daw,
2015; Kolling & Akam, 2017; Wittmann et al., 2016). The
recommendations and predictions outlined in this review may
be useful starting points for the development of increasingly
naturalistic foraging designs, in which elements like patch
revisiting, replenish rates and patch distributions are manipu-
lated to further unravel contributions of learning and memory
to sequential, value-based choice.
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