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A B S T R A C T

Cognitive flexibility is crucial for adaptive human behaviour. Prior studies have analysed the effect of reward on 
cognitive flexibility; however, the neural mechanisms underlying these effects remain largely unknown. This 
study explores how reward influences neural oscillations and how these changes impact behavioural perfor
mance. Using time-frequency decomposition, we examined electroencephalographic data from participants 
engaged in rule-guided task-switching with varying reward prospects. Higher anticipated rewards lead to greater 
desynchronisation of alpha (8–12 Hz) and beta (20–30 Hz) oscillations, which in turn correlated with improved 
task performance. Both alpha power and event-related potential (ERP) coding of reward independently predicted 
reward-based performance improvements, suggesting distinct mechanisms supporting proactive control. These 
findings underscore the unique contributions of neural oscillations in mediating motivational effects on cognitive 
flexibility.

1. Introduction

Understanding the neural mechanisms underlying cognitive flexi
bility and motivation is crucial for advancing our understanding of how 
these processes support adaptive behaviour in complex environments. 
For instance, in everyday life, cognitive flexibility allows individuals to 
switch between different tasks efficiently, such as a parent juggling work 
responsibilities while helping their child with homework. Motivation 
plays a key role in this process, as a motivated individual is more likely 
to stay focused and adapt to changing demands (Braem & Egner, 2018). 
Similarly, in sports, an athlete’s ability to adjust their strategy based on 
the opponent’s moves and stay motivated, especially throughout 
high-stakes events, can significantly impact their performance (Fletcher 
& Sarkar, 2012).

Cognitive flexibility and the related concept of cognitive control 
encompass both reactive and proactive control mechanisms (Braver 
et al., 2009; Braver, 2012). Reactive control involves spontaneous 
adjustment of behaviour in response to unexpected changes in task 

demands, often relying on immediate cues to guide actions. In contrast, 
proactive control entails the anticipatory maintenance of task-relevant 
information in situations where fast and accurate responses are incen
tivized. This latter type of control has been linked to midfrontal neural 
oscillations, particularly in the theta band (4–8 Hz; Cooper et al., 2016; 
Kaiser & Schütz-Bosbach, 2019). These oscillations are thought to play a 
role in preparatory adjustments that optimize performance in response 
to expected task demands. Proactive control is essential for cognitive 
flexibility, allowing individuals to adapt their behaviour based on 
anticipation of changing task requirements and reward contingencies. 
However, how motivation influences these mechanisms is still poorly 
understood.

Hall-McMaster et al. (2019) investigated which aspects of sequential 
task processing are affected by reward to optimise cognitive flexibility. 
They found that high reward prospects increased neural representations 
for task rule information, which was associated with performance im
provements. However, they raised an open-ended question about the 
exact mechanism by which a stronger separation of task representations 
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translates into performance improvements. This question suggests that 
while reward enhances the clarity and distinctiveness of neural coding, 
the neural mechanisms through which motivation influences overall 
cognitive and behavioural performance remain to be fully understood.

One possibility comes from sharpening task control through oscil
lations in the alpha band (8–12 Hz). Alpha oscillations have been 
implicated in various cognitive functions, including attention and 
memory (Klimesch, 2012; Palva & Palva, 2007; Rihs et al., 2009). For 
instance, desynchronisation of alpha oscillations may contribute to the 
disinhibition of task-relevant areas to facilitate anticipated stimulus 
processing (Gould et al., 2011; Haegens et al., 2011; Worden et al., 
2000). Prior studies have shown that alpha power can be modulated by 
task demands and reward, influencing behavioural outcomes such as 
response times (RTs; Pessoa & Engelmann, 2010; Van Dijk et al., 2008). 
For instance, a decrease in alpha power has been associated with 
enhanced cognitive control and faster RTs in high-reward conditions, 
suggesting a link between motivation and neural efficiency (Arnau et al., 
2024; Hughes et al., 2013; van Driel et al., 2015). Additionally, alpha 
oscillations have been found to play a role in the suppression of irrele
vant (Foxe & Snyder, 2011; Jensen & Mazaheri, 2010; Klimesch, 1999) 
or less-rewarding (Heuer et al., 2017) information, thereby facilitating 
task performance. While oscillations have been used to study various 
aspects of cognitive control, they have not been extensively explored in 
the context of information coding and cognitive flexibility. Our predic
tion is that the effect of reward coding on cognitive flexibility is medi
ated by alpha oscillations.

Oscillatory responses in the alpha band may serve as neural markers 
of how effectively individuals translate motivational incentives into 
cognitive performance (Knyazev, 2007; Messerotti Benvenuti et al., 
2019; Zhu et al., 2019). Examining individual variability in these 
oscillatory dynamics provides a valuable opportunity to understand how 
reward prospect interacts with cognitive flexibility at the neural level. 
This is particularly relevant given that motivational states can modulate 
attentional allocation and task preparation, with variability across in
dividuals reflecting differences in neural responsiveness to reward cues 
(Braem et al., 2012; Lee & Reeve, 2017). Reward sensitivity could 
therefore play a key role in shaping how individuals engage with 
cognitive control demands.

In this study, we aimed to investigate how reward anticipation 
modulates neural oscillations, and how these changes relate to cognitive 
flexibility. We hypothesised that higher anticipated reward would lead 
to greater desynchronisation in the alpha band, reflecting enhanced 
attentional engagement and proactive control. We also explored 
whether oscillatory changes in other frequency bands (e.g., beta oscil
lations) contributed to this effect. Finally, we examined whether these 
oscillatory dynamics as well as the multivariate neural coding of reward 
made independent contributions to behaviour to better understand how 
distinct neural processes support motivated cognitive control.

2. Methods

2.1. Data source

The data for this study were from a previously published experiment 
investigating the impact of reward on neural coding of task rules. The 
original dataset was previously described in Hall-McMaster et al. (2019)
and is publicly available at https://osf.io/kuzye/.

2.2. Participants

Thirty participants aged between 18 and 35 years (mean age: 23 
years; 19 females) took part in the study. A post hoc sensitivity analysis 
using the pwr R package (version 1.3–0; Champely, 2020) indicated that 
this sample size provides 80 % power to detect medium-sized correla
tions (e.g., ρ≥0.4866) between oscillatory changes and behavioural 
measures. All participants had normal or corrected-to-normal vision and 

reported no history of neurological or psychiatric conditions. Partici
pants were compensated at a rate of £ 8 per hour or received course 
credit, with the potential to earn up to an additional £ 10 based on their 
performance. Ethical approval was granted by the Central University 
Research Ethics Committee at the University of Oxford, and all partici
pants provided informed consent prior to participation.

2.3. Experimental setup and stimuli

The original data collection involved presenting stimuli on a 22-inch 
screen with a spatial resolution of 1280 × 1024 and a refresh rate of 
60 Hz. Stimulus presentation was controlled using Psychophysics 
Toolbox-3 (Kleiner et al., 2007). Reward cues and feedback were dis
played in size 30 Arial font. Task cues and target stimuli had visual 
angles of approximately 2.52◦ (100 × 100 pixels) and 1.26◦ (50 × 50 
pixels), respectively, based on an estimated viewing distance of 60 cm. 
Responses were recorded using the F and J keys on a standard QWERTY 
keyboard.

2.4. Experimental design

In this task (Fig. 1), participants aimed to accumulate as many points 
as possible by categorizing bidimensional target stimuli based on either 
their colour (yellow vs. blue) or shape (square vs. circle). On each trial 
one feature dimension (colour or shape) was task- relevant while the 
other served as an irrelevant distractor. The relevant feature dimension 
was indicated by a visual task cue presented before the target onset. 
Additionally, each trial offered either a high or low reward magnitude 
for correct responses, signalled at the beginning of each trial by a single 
pound sign (£; low reward, 5–10 points) or three pound signs (£££; high 
reward, 50–100 points).

On each trial, the reward cue (£ or £££) was displayed for 800 ms, 
followed by a 400 ms delay. Next, the task cue (one of four abstract 
shapes) appeared for 200 ms, with the mapping of two cues to each task 
counterbalanced between participants. After a 400 ms delay, the target 
(a yellow square, blue square, yellow circle, or blue circle) was pre
sented and remained on screen until a response was made or for a 
maximum of 1400 ms. If the cued task rule was colour, the correct 
response mapping was F for yellow and J for blue. If the rule was shape, F 
corresponded to square and J to circle. The response phase was followed 
by 200 ms of feedback. Incorrect responses or omissions resulted in 
feedback showing 0 points, while correct responses displayed X points, 
where X varied within the high or low reward ranges based on response 
time (RT).

We aimed to incentivise fast responses by dynamically adapting the 
reward level to each participant’s response time distribution. First the 
RT threshold for different points was initialized so that responses faster 
than 400, 600, 800, 1000, 1200, and 1400 ms earned 100 (10), 90 (9), 
80 (8), 70 (7), 60 (6), and 50 (5) points on high (low) reward trials, 
respectively. We then built up a participant’s RT distribution. For cor
rect trials, the current trial RT was added to an array for its reward 
condition. Once each reward level contained more than six values, 
individualized points criteria were recalculated following Shen and 
Chun (2011). Responses faster than 95 %, 80 %, 65 %, 50 %, and 35 % 

Fig. 1. Experimental design. On each trial, the reward cue was presented, 
followed by an empty-screen delay. A task cue was presented, indicating the 
relevant feature of the upcoming stimulus to respond to. After a second empty- 
screen delay, a coloured shape appeared until the participant responded, for a 
maximum time of 1.4 s. Feedback based on both accuracy and speed were given 
before the inter-trial empty-screen delay.
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of previous RTs from the same condition were rewarded with the most to 
least points. For example, if a participant had the following RTs on the 
first six high-reward trials: 830, 860, 900, 930, 960, and 1000 ms, the 
thresholds for the seventh high-reward trial would be calculated based 
on the percentiles of this distribution. A response faster than 95 % of the 
values (e.g., <830 ms) would earn 100 points, while a response faster 
than 80 % of the values (e.g., <860 ms) would earn 90 points. The trial 
concluded with a randomly selected ITI duration, drawn from a uniform 
distribution of 1000, 1100, 1200, 1300, or 1400 ms.

Participants were trained to achieve a minimum of 70 % accuracy 
before completing 10 experimental blocks of 65 trials each. Excluding 
the first trial in each block, equal numbers of reward cues, task cues, 
stimuli, and ITI durations were presented. The presentation was pseu
dorandomized to ensure trials were balanced based on task, target 
congruency, and task sequence for each reward condition. Target con
gruency referred to whether task-relevant and task-irrelevant features 
were mapped to the same (congruent) or different (incongruent) 
response hands. Task sequence referred to whether the task rule was 
different from the previous trial (switch trial) or the same (repeat trial).

2.5. EEG data acquisition and preprocessing

EEG data were recorded using 61 Ag/AgCl sintered electrodes 
(EasyCap), a NeuroScan SynAmps RT amplifier, and Curry 7 acquisition 
software (RRID:SCR_009546). The EEG data were preprocessed in 
EEGLAB (version 14.1.1b; Delorme and Makeig, 2004). EEG analyses 
were conducted in MATLAB (version 2022b) using the FieldTrip toolbox 
(revision 3f959be1b; Oostenveld et al.,2011) along with custom scripts.

EEG data were down-sampled from 1000 Hz to 250 Hz and filtered 
using a 0.01 Hz high-pass filter and a 40 Hz low-pass filter. For each 
participant, channels with excessive noise were identified through visual 
inspection and replaced via interpolation, using a weighted average of 
the surrounding electrodes. The data were then rereferenced by sub
tracting the mean activation across all electrodes from each individual 
electrode at each time point. Data were segmented into epochs ranging 
from − 1000 to 5000 ms relative to the onset of the reward cue. Epochs 
containing artifacts, such as muscle activity, were rejected based on 
visual inspection. The data also underwent independent component 
analysis to remove stereotyped artifacts such as eye blinks, which were 
removed through visual inspection. On average, 16.6 % of the trials 
(M=107.73, SD=43.77) were removed per participant.

A Laplacian filter was applied to reduce volume conductivity using 
the spline method with a Legendre polynomial degree of 14. Power 
spectral density (PSD) was calculated using an 800 ms Hamming win
dow with a 20 ms step, allowing for a frequency range between 
1.9531 Hz and 39.0625 Hz, and a frequency resolution of 0.9766 Hz. 
This resulted in the dataset used for subsequent analyses. Prior to each 
analysis, data were z-scored over the trial dimension and baseline cor
rected using a time window of 600–300 ms before the onset of the 
reward cue, or 250–50 ms before the onset of the task or target cues. 
These baseline windows were selected separately for each phase to 
maximize information separability related to upcoming task events, 
while minimizing potential carryover effects from preceding stimuli. 
The shorter baseline windows before the task and target cues were 
chosen to match the original study (Hall-McMaster, 2019), and the 
longer baseline window before the reward cue took advantage of the 
preceding inter-trial interval, which provides a longer segment of EEG 
activity for a more accurate baseline estimation. Since we did not 
perform direct comparisons across phases, this approach allowed us to 
optimize the sensitivity of each RSA analysis without confounding task 
phase with distance from the baseline window.

2.6. Data analysis

We explored how reward modulated oscillatory power, and the effect 
this had on response times. For this, we observed whether there was a 

significant effect of reward cue on power across the frequency spectrum. 
We next tested whether power differences could explain behavioural 
differences between high and low reward trials by performing a median 
split analysis. We divided participants into two groups based on the 
difference between response times in low- and high-reward trials and 
then examined the reward effect on oscillatory power in both groups. We 
also performed a correlation to explore potential contributions of 
different frequency bands over time towards response times.

We analysed EEG data with representational similarity analysis 
(RSA; Kriegeskorte et al., 2008) to replicate the multivariate 
event-related potential (ERP) neural coding estimation performed by 
Hall-McMaster et al. (2019). Here, we define neural coding as the 
variation in multivariate EEG patterns that reflect the brain’s repre
sentation of specific task-relevant variables, such as reward level, task 
rule, or stimulus features. We extended this approach into the 
time-frequency domain to explore whether multivariate patterns of 
oscillatory power coded for the different task variables. Throughout the 
paper, we use broadband when referring to ERP data, and time-frequency 
when referring to oscillatory data. RSA was chosen over other 
classification-based methods such as linear discriminant analysis (LDA) 
or support vector machines (SVM) because it is particularly well-suited 
for EEG data, where neural representations of multiple variables are 
often distributed and overlapping (Grootswagers et al., 2017). Unlike 
classifiers that focus on maximizing class separation and require careful 
balancing of data points in each condition for binary discrimination, 
RSA measures the similarity structure between conditions (Haxby et al., 
2014; Kriegeskorte & Kievit, 2013). This approach makes it possible to 
isolate the contributions of multiple task variables to the neural simi
larity structure. Moreover, it enables the assessment of how external 
factors, such as reward, alter the neural similarity structure on a 
continuous measurement scale. By examining the temporal dynamics of 
frequency-specific neural coding, we aimed to identify distinct periods 
during which task-relevant information was most prominently 
represented.

In addition to time-frequency analysis, we conducted a univariate 
ERP analysis on the broadband EEG data to examine whether reward 
cues elicited differences in evoked potentials. Specifically, we compared 
average ERP amplitudes between low- and high-reward trials to identify 
whether reward-related differences were also evident in the time- 
frequency domain.

Both of these analyses were performed considering only the trials in 
which participants responded correctly, across four different regions of 
interest (ROI): all 61 channels, frontal (AF3, AFz, AF4, F3, F1, Fz, F2, 
F4), central (C3, C1, Cz, C2, C4), and posterior channels (O1, Oz, O2, 
PO3, POz, PO4) to explore regional specificity in representing 
information.

In all EEG analyses, we used one-dimensional (for broadband ana
lyses) or two-dimensional (for time-frequency-based analyses) cluster- 
based permutation t-tests (Maris & Oostenveld, 2007). Clusters were 
defined as adjacent time-frequency points that exceeded a significance 
threshold, with adjacency determined along the temporal and frequency 
dimensions using MATLAB’s bwconncomp function. A two-tailed clus
ter-forming threshold of α= 0.05 was applied. No minimum cluster size 
was imposed. Instead, we computed the absolute cluster mass and 
compared it to a null distribution of maximum cluster masses (i.e., the 
largest cluster per permutation) obtained from 10,000 random sign-flip 
permutations, where the sign of each participant was independently 
flipped, to determine corrected p-values.

2.7. Representational similarity analysis

Representational similarity analysis (RSA) is a powerful tool for 
examining how different cognitive processes are encoded in the brain 
over time (Kriegeskorte et al., 2008). RSA leverages pattern information 
that would typically be averaged out in univariate analyses, enhancing 
its sensitivity to distributed neural activity (Kriegeskorte et al., 2006). 
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This method allows researchers to explore the dynamic nature of neural 
representations and their modulation by external factors such as reward 
levels (Hall-McMaster et al., 2019; Luyckx et al., 2019). While this 
method is commonly used for estimating the neural coding of different 
task variables from ERP data (Hall-McMaster et al., 2019; Wei et al., 
2023), it also allows for additional dimensions such as frequency bands 
(Sommer et al., 2022), or channels (Rideaux, 2024) to be explored 
simultaneously. Time-frequency RSA has the potential to be applied in 
various domains, including visual perception, memory, and 
decision-making, revealing how neural representations change with task 
demands and contextual factors (Furl et al., 2017; Kikumoto & Mayr, 
2020). We performed this process twice for each participant, once for 
neural coding analyses of the broadband data and once for the neural 
coding analysis of the time-frequency data (Fig. 2). The first step was to 
calculate the average pattern per condition, obtaining a matrix of 
channels x time points x frequency points x conditions. Then, the 
Mahalanobis distance (MD) between each condition was calculated for 
each time-frequency point combination using the difference between the 
power in those conditions, as well as the channel covariance matrix 
through Eq. 1. 

MDAB =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(PowerA − PowerB)
T
× Cov− 1 × (PowerA − PowerB)

√

(1) 

We then calculated representational dissimilarity matrices (RDM) of 
multivariate condition distances for each time-frequency point and for 
each participant. A total of five 16 × 16 RDMs (two reward levels, two 
tasks, two colours, and two shapes) were built to capture neural oscil
latory patterns related to different task variables (reward, task type, 
task-relevant and -irrelevant features, and motor coding). These RDMs 
had zeroes in positions where conditions matched on the variable of 
interest (e.g., low reward blue square and low reward yellow circle), and 
ones in the remaining positions. As these RDMs are symmetric, the upper 
triangular portion of each was transformed into a distance vector (DV) 
and concatenated before being entered into a linear multiple regression 
where the time-frequency data (TFD) was the dependent variable, as 
shown in Eq. 2. 

TFD = β0 + β1 × rewardDV + β2 × taskDV + β3 × task.relevantDV+ β4

× task.irrelevantDV + β5 × motor.codingDV+ ε
(2) 

To assess potential multicollinearity among the RDM predictors, we 
computed variance inflation factors (VIF) for each vectorized RDM. All 
VIF values were below 2.68, lower than commonly accepted thresholds 
such as 4 or 10, indicating low multicollinearity (O’Brien, 2007; see 
Supplementary Table S1). The regression was performed three times 
considering baseline windows before the onset of the reward, task, and 
target cues.

2.8. Code availability

The analysis code as well as the preprocessed data can be accessed at 
https://github.com/JuanMChau/AlphaBetaOscillations.

3. Results

3.1. Reward magnitude is encoded in the time-frequency domain along 
the trial

We used RSA to test for coding of task variables in the time-frequency 
data (Fig. 3). We first examined neural patterns across all channels or 
within frontal, central, or posterior regions of interest. Reward coding 
was observed in all channels (window tested = 0–3500 ms from reward 
cue onset), where a cluster in the theta and alpha bands appeared 
immediately after the reward cue and lasted until shortly before the task 
cue onset (cluster window = 93–1007 ms, 5.5–15 Hz, corrected 
p < 0.0001). A second, slightly lower-frequency, cluster occurred after 
the target onset (cluster window = 2253–3007 ms, 2–13 Hz, 
p < 0.0001). In the frontal ROI, a cluster in the alpha band could be 
observed after the reward cue and lasted until after the onset of the task 
cue (cluster window = 133–1407 ms, 8.5–14 Hz, p < 0.0001). A second 
cluster in the theta and alpha bands also occurred after the target onset 
(2253–2967 ms, 2–13 Hz, p = 0.0009). There were three clusters in the 
central ROI: the first one appeared in the high alpha and low beta bands 
shortly before the task cue and lasted until right before the target cue 
onset (cluster window = 853–1747 ms, 11.5–15 Hz, p = 0.0069). The 
second cluster also occurred in the alpha and low beta bands after the 
target cue onset (cluster window = 2373–2907 ms, 9.5–14 Hz). The 
third cluster was observed between the delta (<4 Hz) and theta bands, 
also after the target cue onset (cluster window = 2453–3027 ms, 
2.5–5 Hz, p = 0.0244). Finally, one cluster was found in the posterior 

Fig. 2. Time-frequency Representational Similarity Analysis (RSA) pipeline. The first step is to calculate the PSD for each EEG channel and trial. Then, Mahalanobis 
Distances between all 16 conditions averages are calculated for each time and frequency point, resulting in a 16 × 16 dissimilarity matrix. Finally, these dissimilarity 
matrices are regressed against model RDMs that predict differences in dissimilarity structure for each individual task variable.
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ROI in the alpha band after the target cue onset (cluster window =
2513–3027 ms, 8.5–11 Hz, p = 0.0423).

The target’s task-relevant feature (i.e., blue or yellow on colour tri
als, and circle or square on shape trials) was only briefly represented in 
all channels (window tested = 0–2700 ms from the target cue onset), in 
the low frequencies (cluster window = 153–627 ms, 2–8 Hz, 
p = 0.0001). The task type and the target’s task-irrelevant feature (e.g., 
blue or yellow on shape trials) were not represented in the time- 
frequency domain (corrected p > 0.05). Finally, the (left- or right- 
hand) response was represented in all channels (window tested =
0–2700 ms from the target cue onset), with clusters in the delta, theta, 
and lower alpha bands (cluster window = 113–927 ms, 2–10 Hz, 
p < 0.0001), and in the beta band (cluster windows = 193–1067 ms, 
15.5–23.5 Hz, p = 0.003; 1053–1847 ms, 17.5–24.5 Hz, p = 0.0042). In 
the central ROI, an alpha cluster occurred immediately after the target 
cue (cluster window = 113–687 ms, 4.5–9 Hz, p = 0.0081). A delta- 
frequency cluster (cluster window = 233–847 ms, 2–3 Hz, 
p = 0.0273), and a large beta cluster (293–2387 ms, 15.5–26.5 Hz, 
p < 0.0001) were also observed briefly after the target cue.

3.2. Reward prospect desynchronises alpha-beta oscillations

The multivariate analysis indicated that the pattern of alpha-band 
oscillations differed somehow between reward levels, but does not 
reveal what the difference was. To better understand how oscillations 
differed between reward levels, we next used univariate comparisons of 
the time-frequency response between reward conditions (Fig. 4). Given 
that many induced effects might dilute when averaging over all channels 

together in a univariate analysis, we limited the analysis in this section 
to each individual ROI to capture localized oscillatory changes.

Relative to the pre-trial baseline, both alpha and beta bands 
desynchronised throughout most of the trial, particularly in the central 
and posterior ROIs. When comparing average power between high- and 
low-reward trials, a significant cluster was observed in the frontal ROI 
(window tested = 0–3500ms from reward cue onset) in the alpha and 
beta bands shortly before the target cue (cluster window = 1553–2787 
ms, 8.5–18 Hz, p = 0.01). Two larger alpha and beta band clusters 
appeared in the central ROI, after the reward cue onset, and lasted until 
after the target cue (cluster windows = 293–1362 ms, 16.5–27.5 Hz, 
p = 0.038; 413–2907 ms, 7.5–26.5 Hz, p < 0.0001). A strong desynch
ronisation in the alpha and lower beta bands was observed in the pos
terior ROI, starting during the reward phase, and ending after the target 
cue onset (cluster window = 353–2242 ms, 5.5–16 Hz, p = 0.003). 
Finally, a beta synchronisation cluster appeared in the same ROI by the 
end of the trial (cluster window = 2693–3887 ms, 12.5–19 Hz, 
p = 0.044). Therefore, oscillatory responses to reward prospect man
ifested in widespread desynchronisation starting at posterior sites in the 
alpha band spreading to more anterior sites and higher frequencies 
around the time of the task cue presentation and subsequent task 
execution.

3.3. Reward effects on behaviour predict reward sensitivity of alpha-beta 
modulation

We then subdivided our sample based on a median split of the RT 
differences between high- and low-reward trials. Participants with 

Fig. 3. Average neural coding of different task-related features in the time-frequency domain. Each row corresponds to a different ROI: all, frontal, central, or 
posterior channels; and each column corresponds to a different element: reward level, task type, task-relevant and -irrelevant features, and motor coding. Highlighted 
areas contain significant clusters at the α= 0.05 level.
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larger RT differences unsurprisingly had significantly lower RTs when 
reward was higher (t(14) = 7.08, p < 0.0001) but this difference was 
only at a trend level in the other half (t(14) = 2.02, p = 0.0624).

Moreover, participants with a larger RT benefit on high-reward trials 
presented significant reward-related desynchronisation in alpha and 
beta power in the frontal (window tested = 0–3500 from reward cue 
onset, cluster windows = 313–2367 ms, 20–26.5 Hz, p = 0.0036; 
873–2827 ms, 7.5–14 Hz, p = 0.0227), central (cluster windows =
253–2327 ms, 4.5–22 Hz, p = 0.0023; 453–1647 ms, 19–27.5 Hz, 
p = 0.0331), and posterior (cluster window = 313–2227 ms, 5.5–14 Hz, 
p = 0.0049) ROIs (Fig. 5A). By contrast, participants with lower RT 
differences between reward conditions showed no significant oscillatory 
modulation (Fig. 5B).

We also performed individual t-tests on the alpha (window tested =
500–2500 ms from the reward cue onset, 8–12 Hz) and beta (window 
tested = 500–2500 ms from the reward cue onset, 20–30 Hz) power 
bands to confirm significant differences across reward conditions for 
each half of the split. For the high-RT-difference group, we found a 
stronger desynchronisation difference in the frontal ROI for both alpha 
(t(14) = 3.45, p = 0.0039) and beta (t(14) = 4.87, p = 0.002) power. 
Similar results were observed in the central ROI for alpha (t(14) =
2.9199, p = 0.0112) and beta (t(14) = 2.58, p = 0.0217) power. 

However, in the posterior ROI, the desynchronisation was only stronger 
in alpha (t(14) = 3.75, p = 0.0022) and not in beta power (t(14) = - 
0.35, p = 0.729). Conversely, for the low-RT-difference group, there 
were no desynchronisation differences in the frontal ROI for either alpha 
(t(14) = 0.39, p = 0.6994) or beta (t(14) = -0.73, p = 0.4791) power. 
Similarly, no desynchronisation was found in the central ROI for alpha (t 
(14) = 1.17, p = 0.2613) or beta (t(14) = 1.23, p = 0.2379) power. 
Finally, no desynchronisation was observed in the posterior ROI for 
alpha (t(14) = 1.77, p = 0.0978) or beta (t(14) = 0.11, p = 0.9135) 
power.

3.4. Individual differences in alpha and beta power predict response times 
differences between reward levels

While the above analysis showed a strikingly different pattern of 
results between groups, we did not test whether the groups themselves 
differed significantly. To further establish the role of oscillatory power 
during the reward phase and then compare the relative contribution of 
different oscillations to performance, we next used signed-rank 
Spearman correlations to confirm that higher alpha power differences 
translated into a higher RT difference between reward levels across 
participants. Average alpha power differences (averaged over 500–1000 

Fig. 4. Average power spectral density for different reward conditions. Each row corresponds to a different trial grouping: low-reward, high-reward, and difference 
between high- and low- reward trials; and each column corresponds to a different ROI: frontal, central, or posterior channels. Highlighted areas contain significant 
clusters at the α= 0.05 level.
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Fig. 5. Average power spectral density for participants split by their RT differences in low- and high-reward trials. The first row corresponds to the average difference 
between high- and low- reward trials, and the second row shows the average alpha/beta power for low (blue) and high (red) reward trials; and each column 
corresponds to a different ROI: frontal, central, or posterior channels. (A) Participants who had a higher RT difference between reward conditions. (B) Participants 
who had a lower RT difference between reward conditions. Highlighted areas contain significant clusters at the α= 0.05 level. Significance level for pairwise 
comparisons * = 0.05, ** = 0.01, *** = 0.001.
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ms from the reward cue onset and between 8 and 12 Hz) correlated with 
RT differences over all channels (ρ(28)= 0.3651, p = 0.048), as well as 
the posterior (ρ(28)= 0.3628, p = 0.0495) ROIs, and there was a trend 
in the frontal (ρ(28)= 0.3571, p = 0.0534) ROI. No significant clusters 
were found in the central (ρ(28)= 0.2988, p = 0.1089) ROI.

We then used a cluster-based permutation signed-rank correlation 
test to find time-frequency windows that predicted the RT difference 
across reward levels (Fig. 6). This revealed two significant clusters in all 
channels along the trial (window tested = 0–3500 ms from the reward 
cue onset): one in the alpha band (cluster window = 193–2367 ms, 
6.5–14 Hz, p = 0.0091), and one in the beta band (cluster window =
353–2067 ms, 22–29.5 Hz, p = 0.0118). The beta cluster could also be 
found in the frontal ROI (cluster window = 353–2647 ms, 22–26 Hz, 
p = 0.0025), while the alpha cluster was observed in the posterior ROI 
(cluster window = 373–1507 ms, 3.5–11 Hz, p = 0.0091).

3.5. Neural desynchronisation makes a distinct contribution beyond ERP- 
based neural coding

Finally, we investigated whether the reward-related information in 
the broadband ERP signal and the oscillatory components observed in 
the alpha and beta band made independent contributions to the 
behavioural response. We replicated the RSA analysis of ERP data from 
Hall-McMaster et al. (2019; Fig. 7A), which found significant neural 
coding of reward information throughout the trial (cluster window =
67–2973 ms, p = 0.0002). We then calculated partial correlations be
tween the average alpha power differences (averaged over 0–1000 ms 
from the reward cue onset, between 8 and 12 Hz), the average neural 
coding (0–1000 ms from the reward cue onset), and the difference in 
median RTs (RTdiff) between reward levels (Fig. 7C).

To explore whether reward cues elicited differences in ERP ampli
tude, we conducted a cluster-based permutation test comparing high- 
and low-reward trials across frontal, central, and posterior ROIs 
(Fig. 7B). We found significant ERP differences (window tested =
0–3500 ms from the reward cue onset) in the frontal (995–1245 ms, 
p = 0.047; 2339–2629 ms, p = 0.0186; 2763–3293 ms, p = 0.0048), 
central (991–1489 ms, p = 0.004; 1607–1961 ms, p = 0.014), and 
posterior (1975–2557 ms, p = 0.0094; 3231–3500 ms, p = 0.047) ROIs; 
however, most of the found differences did not belong to the reward 
phase. Interestingly, these ERP differences appear to be primarily driven 
by participants in the high-RTdiff group, as no significant clusters could 
be found in the low-RTdiff group (see Supplementary Figure S1 for the 
differences on each half of the median split).

When averaging alpha power across all channels and controlling for 
age and sex, signed-rank Spearman partial correlations revealed that 
stronger ERP-based reward neural coding (ρ(25)= 0.4665, p = 0.014) 
and stronger alpha desynchronisation (ρ(25)= 0.4973, p = 0.008) 

predicted a higher RTdiff, but there was no correlation between ERP 
decoding and alpha desynchronisation (ρ(25)= -0.0692, p = 0.732). 
Therefore, alpha desynchronisation and reward neural coding appear to 
be independent predictors of performance. Additionally, alpha 
desynchronisation was significantly correlated with age (ρ(25)= - 
0.5421, p = 0.004), indicating that age may influence the degree of 
alpha modulation in response to reward.

We next tested whether beta desynchronisation (0–1000 ms from the 
reward cue onset, 20–30 Hz) independently predicted performance by 
including alpha and beta power, as well as reward coding in the ERP 
data and RTdiff in a partial correlation analysis. When averaging alpha 
power or beta power across all channels and controlling for age and sex, 
signed-rank Spearman partial correlations also revealed that stronger 
reward coding in the ERP data (ρ(24)= 0.4623, p = 0.017) and alpha 
desynchronisation (ρ(24)= 0.4095, p = 0.038) predicted a higher RTdiff, 
and that the alpha and beta desynchronisation were correlated (ρ(24)=
0.3979, p = 0.044). However, beta desynchronisation (ρ(24)= 0.1104, 
p = 0.591) did not predict RTdiff, possibly because it competed with 
alpha power for the same variance since they were themselves corre
lated. When we restricted alpha and beta power to channels from the 
frontal ROI, ERP reward coding still predicted higher RTdiff (ρ(24)=
0.5017, p = 0.009), but now RTdiff was separately predicted by stronger 
beta desynchronisation (ρ(24)= 0.5107, p = 0.008), with no significant 
correlations between alpha desynchronisation and any of the other 
measures (p > 0.05). Stronger ERP reward coding also led to higher 
RTdiff in the central (ρ(24)= 0.4765, p = 0.0139) and posterior (ρ(24)=
0.3966, p = 0.045) ROIs. Interestingly, after taking ERP reward coding 
into account, alpha or beta desynchronisation measured in the central or 
posterior ROIs no longer correlated with RTdiff (central alpha: ρ(24)=
0.3621, p = 0.069; central beta: ρ(24)= 0.2724, p = 0.178; posterior 
alpha: ρ(24)= 0.2643, p = 0.192; posterior beta: ρ(24)= -0.1332, 
p = 0.517). Alpha and beta desynchronisation were also correlated 
(ρ(24)= 0.5064, p = 0.008) in the posterior ROI. Overall, while the 
reward coding seems to be largely independent of both alpha and beta 
desynchronisation and accounting separately for performance im
provements, oscillations in the two bands tended to be correlated and 
therefore accounting for similar variance in RTdiff.

4. Discussion

This study aimed to investigate how reward modulates neural os
cillations, and their effects on behavioural performance. We used time- 
frequency RSA to explore changes in the neural coding of task-related 
variables, finding significant representations of reward magnitude and 
motor coding in the spatial pattern of low-frequency oscillatory power. 
We next looked at desynchronisation changes in different frequency 
bands as a function of reward, finding that anticipation of larger rewards 

Fig. 6. Correlation between desynchronisation differences and response time differences for low and high reward trials. Each plot corresponds to a different ROI: all, 
frontal, central, and posterior channels, respectively.
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led to greater alpha and beta desynchronisation. Moreover, across par
ticipants the difference in alpha and beta desynchronisation between 
high and low reward was correlated with differences in RT across 
reward levels, corroborating the behavioural relevance of reward- 
related oscillatory changes. Finally, we observed that differences in 
ERP reward coding and oscillatory desynchronisation between reward 
magnitude conditions were both predictive of reward-induced perfor
mance benefits, suggesting independent mechanisms.

We observed that the representation of reward magnitude, features, 
and responses were distinct in the time-frequency domain. Reward 
coding was prominent across all channels and specific regions of interest 
(ROIs), indicating that reward cues are robustly encoded in the brain’s 
oscillatory activity. Etzel et al. (2016) had previously evidenced that 
reward cues enhanced the discriminability of task representations in 
frontoparietal BOLD signals. This study replicates these results using 
EEG recordings, while also providing evidence of both alpha and beta 
oscillations being involved in this process. The presence of 
reward-related oscillations in the alpha and beta bands suggests that 
these frequencies play a crucial role in encoding motivational signals. 
An interesting difference with the results found in Hall-McMaster et al. 
(2019) is that the task type could not be decoded in the time-frequency 
domain. Two possible explanations for this could be that the neural 
patterns associated with this specific task feature are either only 
phase-locked, or the main components of the elicited ERPs are contained 
in lower frequencies that fell outside our analysed frequency range (e.g., 
below 1 Hz). These possibilities could be empirically distinguished by 
separating the phase-locked and non-phase-locked components of the 
signal (Singhal et al., 2023), or by applying a high-frequency filter 
before attempting to decode task-related signals using RSA.

Our analysis revealed significant desynchronisation in the alpha and 

beta bands across different ROIs in high-reward trials. The alpha mod
ulation is consistent with the idea of an increase of allocated attentional 
resources (Klimesch, 2012; Palva & Palva, 2007) and the subsequent 
enhancement of task-relevant processing (Foxe & Snyder, 2011; Heuer 
et al., 2017; Jensen & Mazaheri, 2010) as a function of reward prospect. 
While the changes in the beta band were unexpected, we believe they 
could also be related to reward expectation and task cost anticipation 
(Gheza et al., 2018), task rule retrieval from long-term memory 
(Hanslmayr et al., 2012), changes in spatial attention (Sauseng et al., 
2005; Siegel et al., 2008), or to anticipated visuomotor planning (Kilavik 
et al., 2013).

We found that participants with higher RT differences between 
reward conditions exhibited significant desynchronisation changes in 
alpha and beta power, whereas those with lower RT differences did not 
show such modulation. This suggests that individual differences in alpha 
power modulation may underlie variations in cognitive flexibility and 
performance. Our results are also consistent with Sawaki et al. (2015), 
who provided evidence of alpha desynchronisation being associated 
with faster RTs in high-reward conditions. Here, we additionally found 
that beta-band desynchronisation may also enhance behaviour. These 
individual differences in reward processing may be related to the par
ticipants’ intrinsic motivation within the task, as those who are more 
intrinsically motivated might engage more robustly with the reward 
cues, leading to greater neural modulation and improved performance 
(Lee & Reeve, 2017). This variability may also reflect broader motiva
tional traits, as suggested by prior work linking reduced alpha modu
lation to diminished reward responsiveness in depression (Messerotti 
Benvenuti et al., 2019) and apathy in Parkinson’s disease (Zhu et al., 
2019). Such findings support the idea that individual differences in 
neural sensitivity to reward may stem from underlying differences in 

Fig. 7. ERPs and contributions from different band powers and the ERP neural coding to RT. (A) Average ERP model fit replicated from Hall-McMaster et al. (2019). 
(B) Average low- and high-reward ERPs for the frontal, central, and posterior ROIs. The black horizontal bars indicate significant clusters at the * = 0.05, ** = 0.01, 
*** = 0.001 significance levels. (C) Partial correlations between alpha power, beta power, ERP model fit, and RTdiff across reward levels. Colours denote the cor
relation coefficient, and numbers indicate p-values.

J.M. Chau Delgado et al.                                                                                                                                                                                                                      Biological Psychology 200 (2025) 109085 

9 



motivational engagement.
The correlational analysis revealed that higher alpha power differ

ences were associated with greater RT differences across reward levels. 
This relationship was particularly strong in the posterior ROI, between 
the reward and target cues, and may reflect a shift in spatial attention 
through an increase in cortical sensitivity towards the upcoming target 
cue (Klimesch, 2012; Rihs et al., 2009). Beta power differences in the 
frontal ROI, on the other hand, may indicate enhanced readiness and 
efficiency in executing the task, driven by the motivational influence of 
anticipated rewards (Zaepffel et al., 2013). Finally, we found that the 
ERP reward coding through RSA and alpha/beta desynchronisation 
differences provided individual contributions to the RT differences 
across reward levels. We believe that the ERP contribution could be a 
representation of motivation as a function of reward level, as had 
already been highlighted by Hall-McMaster et al. (2019), while the 
oscillatory changes may represent a distinct attentional component, 
showcasing the relevance of exploring multidimensional EEG recording 
analysis methods to expand on the interaction between ERP and oscil
latory components. Interestingly, the partial correlation analysis did not 
reveal a significant contribution of alpha desynchronisation to RT dif
ferences in the posterior region. This could be due to the chosen time 
window size being larger than the duration of the desynchronisation.

Additionally, we observed a significant correlation between alpha 
desynchronisation and age, suggesting that individual differences in 
reward-related alpha modulation may decline with age, possibly due to 
reductions in attentional engagement or cortical excitability. This aligns 
with previous findings showing that alpha oscillatory dynamics change 
across the lifespan, often reflecting shifts in cognitive control efficiency 
and neural inhibition mechanisms (Voytek et al., 2015).

In conclusion, our study highlights the importance of alpha and beta 
oscillations in the neural coding of task rules and their modulation by 
reward. Our results provide evidence for reward directly influencing 
alpha/beta desynchronisation, particularly during the reward cue phase 
of the task, which then translates into a faster RT. Finally, we found that 
ERP reward coding and alpha/beta modulation contribute indepen
dently to behaviour, possibly suggesting that the modulation in the 
alpha and beta bands might not necessarily be related to a representa
tion of reward, but to an increased engagement with proactive control.
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